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About the lack of convergence in an environment with limited 
representation of the number 

 
 

Abstract. The article presents cases of lack of convergence of transitional problems solutions both for the linear and non-linear examples because 
of using IEEE-754 standard. In a linear case, electric circuit solution using state variables was presented. As a non-linear case, ferroresonance 
system solved by various numerical procedures was shown. To solve the proposed problems, the 64-bit Mathcad Prime 3.0 environment was used. 
 
Streszczenie. W artykule przedstawiono przykłady braku zbieżności w rozwiązaniu liniowego obwodu metodą zmiennych stanu oraz obwodu 
ferrrorezonasowego w 64 bitowym programie Mathcad Prime 3.0 stosującym obowiązujący standard IEEE-754. Przykłady braku zbieżności w 
rozwiązaniu liniowego obwodu metodą zmiennych stanu 
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Introduction 

Nowadays, very often to solve technical matters 
described by mathematical equations, ready applications 
such as Matlab, Mathcad, or Mathematica are used. The 
programs contain numerous preset procedures allowing to 
change various parameters which also have influence on 
accuracy. It is obvious that the value of many of these 
parameters has its limitations. Such a limitation is the 
maximum number of digits representing the number in 
these environments (17digits). It is caused by a still used 
internal way of representing floating point numbers using 
the BFP record (binary floating point). In order to 
standardize rules on floating point operations the IEEE-754 
standard [4] was developed which defines the BFP formats 
available for binary system that is binary_32 called single 
precision, binary_64 - double precision and binary_128 -
 quadruple precision. However, in most of the packages in 
both numeric (as Matlab) and universal as (Mathcad) they 
use numbers record in double precision. Their record is 
composed of 64 bits, where 11 bits fall for the exponent and 
52 bits for the mantissa. Such a method of recording the 
number gives a range from about 2.2 10-308 to 1.8 10308. 
For example, the expression 2K! / K! = 2 will not be 
calculated for K> 170 because the program will attempt to 
determine separately the value of a counter and afterwards 
a denominator thus exceeding the limit values understood 
by the computer.  In addition to limiting the representation of 
numbers due to the length of computer words it is worth 
emphasizing the need of rounding the approximate 
irrational numbers. 

Additionally, one should note that for many rational 
decimals there is no exact binary representation for 
example: 0.210=0.(0011)2. For this reason, one can 
encounter  technical issues whose mathematical description 
gives a solution proven as convergent, and which using the 
environment such as, for example Mathcad turns out not to 
give approximate results even for well-conditioned 
problems. As examples for such problems the solutions of 
the classical tasks of electrotechnics theory such as 
transients for linear and non-linear circuit will be presented 
in the paper. Following example the problem of achieving 
convergence solutions in Mathcad environment was shown.  
 
Example of linear circuit analysis 
 To solve the linear circuit (Fig.1) the equation of state 
variables was applied (1). In turn, to determine the transition 
matrix the Sylvester method, and further the method of 
Taylor series developing were used (5). When using a 

computer it should be emphasized that the method of 
Taylor is offered in references as effective for any non-
singular matrix A, and for any time [1]. 
 

 
Fig.1. Tested linear circuit, ei(t)=Emisin(ωt) 
 

Table 1 Circuit parameters from Fig.1 
Em1[V] Em2[V] [rad/s] L1[H] L2[H] R1[] 
15 18 314 0.3 0.1 2 
R2[] R3[] R4[] C1[F] C2[F]  
5 3 4 15 40  

 

(1)   ( )
•
x = Ax + Be t  

To obtain the equation of state (1) in the normal form we 
formulate the Kirchhoff`s equations obtaining the following 
matrix form:  

(2)   ( )
•

H x = Cx + De t  

where:  T
1 2 2 4[ ( ), ( ), ( ), ( )]x c cu t u t i t i t  

Then multiplying equation (2) by 1H we obtain: 

(3)  -1 -1 ( ) ( )
•
x = H Cx + H De = Ax + Bet t  

 

In the considered example matrices A and B in Mathcad are 
determined as follows: 
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Because the solution of the inhomogeneous equation (1) 
can be represented as a formula (4):  

(4)   ( )( ) ( )d 
t

A A t-τ
0

0

x e x + e Bett τ τ  

hence fundamental to the application of the method of state 
variables is the determination of a transitional matrix (matrix 
exponentials) defined as the following series:  
 

(5)    
( )

( )
!


  A A K

t
Taylor

K

t
e A t

K
 

 

When the matrix A of n-th order has n different eigenvalues, 
the transition matrix (the matrix exponential function) may 
be determined by a closed Sylvester formula [7]:  
 

(6) 
1

( )
( ) exp( )

( )





 
 


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 

Asn
t s i
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i s i

s i

e Asylvest t tA

1


 
 

Using formula (6) an analytic solution of considered circuit 
was obtained in Mathcad. Additionally to validate solutions 
the symbolic processor of this environment was used 
allowing the use of Laplace method. Examples of voltage 
and current waveforms showing their compatibility are 
presented in Fig.2.3.  
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Fig.2. The waveforms of the voltages for the solution of the 
inhomogeneous equation by Sylvester and Laplace method  
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Fig.3. The waveforms of the currents for the solution of the 
inhomogeneous equation by Sylvester and Laplace method  
 

It so happens that the matrix A in the equation of state 
(1) has multiple roots of the characteristic equation and then 
you can not apply the Sylvester method to determine 
transitional matrix. Additionally in the literature an 
alternative calculation of this matrix by the formula (5) is 
reported [1, 2, 3, 6, 7, 9]. Therefore, it has been attempted 
to solve the same example using Taylor method to develop 
a transitional matrix. In the Fig. 4.5 there are examples of 
solutions of the same example but with use of (5). 
Comparing these solutions, it was found that after a short 
time, the bifurcation of these solutions was started, although 
in Taylor series as many as K = 100 components were 
used. In addition, it must be admitted that the time of the 
solutions of inhomogeneous state equation using the 
formula (4) by using (5) increased by several times 
compared with the use of (6). Therefore, in further 
simulations a superposition of states using a simple 

symbolic solution of steady state for sine extortion was 
employed. The results coincided with the results using (6).  
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Fig.4. The voltages waveforms for the solution of the 
inhomogeneous equation by Sylvester and Taylor method for 
K=100 
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 Fig.5. The currents waveforms for the solution of the 
inhomogeneous equation by Sylvester and Taylor method for 
K=100 
 

Reason for lack of convergence of waveforms with 
Fig.4,5 is obvious if one compares the transitional matrices 
as determined by Sylvester and Taylor patterns:  

Asylves 0.023( )

0.645

0.018

1.195 10
4

2.256 10
3

0.048

2.833 10
3

1.521 10
4

7.731 10
4

2.39

1.141

0.585

5.221 10
3

22.557

2.899

2.611 10
3

0.659



















 
 

ATaylor 0.023( )
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The situation in this case is improved (but still for a 
unsatisfactory range of less than 15 ms) by an increased 
number of components of the series (5) to K = 170 that is 
the maximum value interpreted in Mathcad for the 
expression K! The results for this case are shown in Fig.6 
and Fig.7.  
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Fig.6. The voltages waveforms for the solution of the 
inhomogeneous equation by Sylvester and Taylor method for 
K=170  
 

It turns out that in environments such as Mathcad one 
can not obtain satisfactory accuracy of transitional matrix 
determined on the basis of Taylor series development even 
using a large number of components. In this case, for K>170 
Mathcad generates a message: Found a number with a 
magnitude greater than 10^307 while trying to evaluate this 
expression. 
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Fig.7. The voltages waveforms for the solution of the 
inhomogeneous equation by Sylvester and Taylor method for 
K=170  
 

In [2] pattern (7) is formulated which determines the 
maximum error made in calculating the matrix function 
according to the formula (5). This ensures that the rest of 
the series (above K components) is convergent, if: 

1AT   

 (7)   
 

1

,

1

1 ! 1



 
 

A

A

K

i j

T
r

K T
 

The following is a fragment of simulation in Mathcad 
environment which computes the norms of AT for the T1 
and T2 as well as the maximum error based on (7): 

T1 15 10
3 T2 15 10

6 normi A T1( ) 1 10
3 normi A T2( ) 1

K 100 rij
normi A T1( )

K 1( )

K 1( )
1

1 normi A T1( )
 rij 1.062 10

140
 

As you can see from the above simulation the norm of 
AT assumes a value of 1 already for the time 15 µs while 
the error for T1 (where the norm amounts to 1000) is 
enormous and rises with increasing K. On the other hand, 
below is shown a simulation of a transitional matrix for the 
time T1 to which waveforms of the determined quantities 
were still overlapping Fig.6,7. 
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Assuming that the values of the elements of the matrix 
from Sylvester method are accurate a matrix of errors was 
also defined: 

Asylves 0.01( ) ATaylor 0.01( )
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As you can see the values of matrix elements are 
indeed lower than the error estimated on the basis of (7), 
but the estimate does not constitute reliable information 
about the error of method. Of course, in the case of 
application of Taylor method one can use the discrete 
(iterative) method [2] where the matrix exp(AT) is 
determined once for the satisfying low-value T. 

 
 

Example of  nonlinear circuit analysis 
The second considered example is a circuit with the 

highly non-linear coil (Fig.8). The circuit was a simplified 
model of the system power transformer [8]. Characteristics 
i() was approximated by a polynomial of 11-th degree (8).  
 

(8)   11 i a b   

iL

iR

C

iC

Re(t)

 
 
Fig.8. Tested nonlinear circuit 
 
Table 2 Circuit parameters from Fig.8 

e(t)=Emsin(t) a[A/Wb] b[A/Wb11] C[nF] R[] 

Em=13.5kV 2.8x10-3 7.2x10-3 1250.77 1020 

 
Most of the procedures of Mathcad environment 

requires the normal form of equations, which for the circuit 
of Fig.8 is as follows:  
 

(9) 
1

1
11

1 0 0

sin( )

( sin( ))


 
 
    
 

•
x = A x

m

m

-x + E t

1 a b
-x + E t + x + x

RC C C




 

where: 
T[ ( ), ( )]x ct u t  

 

In turn, reduction of above system in the flux function 
leads to the well-known second-order equation called 
nonlinear damped oscillator: 

 (10)  
2

11
m2 2

d 1 d
cos( )

dt dt
   

a b
E t

RC C C

       

 

In the first approach to the solution of the system (9) the 
Runge-Kutta procedure (in Mathcad – rkfixed) was used, 
wherein to determine the step leading to the convergence, 
iterative simulations were carried out reducing the step by 
half in each iteration. Figure 9 shows the course of the flux 
for a pre-100-fold lower voltage Em = 135V where 
convergence was achieved very quickly even for as wide a 
time range as more than 20 seconds. 
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Fig.9. Flux for rkfixed (for h step -trace 1, for 0.5h step -trace 2) 
for Em=135V  
 

Further simulations were carried out already for a given 
voltage Em = 13.5kV (Tab. 2). This time by increasing the 
number of steps to a maximum value accepted by the 
Mathcad environment (89x106) one failed to achieve the 
expected convergence. As you can see in Fig 10, at a 
borderline small step one has managed to retain 
convergence only for a small time range, i.e. a little over 
0.15 seconds. Since the matrix A of the system (9) is not 
best conditioned, also the procedure dedicated for badly 
conditioned systems (in Mathcad - Stiffr procedure) was 
applied. Unfortunately one also failed to achieve 
convergence for any step. In Fig.11 flux waveforms 
obtained by the Stiffr and Runge-Kutta procedure for the 
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same small step were compared. As expected waveforms 
coincided only for a small time range. It should be 
emphasized that the simulations were carried out for the 
case of both a dimensionless and dimensional form but 
unfortunately it did not improve the convergence. The 
Fig.12 shows the waveforms of relative errors for both of 
them in the functions of iterations which means step 
decreasing by half.  
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Fig.10. Flux for rkfixed (for h step -trace 1, for 0.5h step -trace 2) 
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Fig.11. Flux for rkfixed and Stiffr (for h step -trace 1, for 0.5h step -
trace 2)  
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Fig. 12. Flux relative error between i+1 and i-th iteration for 
increasing number of steps for dimensional and nondimensional 
form for t=0.2s. 
 

Using all family of procedures of Mathcad environment 
one did not get convergence for any of the desired time 
ranges. What is worse, Mathcad should display a message: 
not converging, and in the considered case it does not 
appear [5].  
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Fig.13. Poincare map for Em=135V 
 

Because the tested issue was considered for chaotic 
behavior [8] one carried out additional simulations for 

different voltages Em determining the Poincare maps which 
means phasing portraits for times distant by a period of 
excitation (20ms). It was found that these maps for small 
voltages for which one managed to achieve waveforms 
convergence and their periodicity took the form of closed 
trajectories Fig.13. Otherwise, they had the form of chaotic 
sets Fig.14. 
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Fig.14. Poincare map for Em=13.5kV 
 
Conclusion 
 The presented results lead to the fundamental 
conclusion that for certain parameters known mathematical 
formulas (despite dedicating them to computing [1,2,3,6]) 
may not be effective in many currently popular numeric or 
multi-tasking programs, such as Mathcad or Matlab due to 
the binding IEEE-754 standard. At the same time whereas 
in the first example, the inaccuracy of the determination of 
transitional matrix based on the Taylor series was clearly 
visible then in the case of the nonlinear example the user 
can assume that if the program does not alert of the lack of 
convergence or exceeding limit values it means that it has 
obtained a reliable solution. Of course, there are specialized 
environments based on the size of binary128 (quadruple 
precision), which would undoubtedly improve the results 
and it seems that it is a matter of time when popular 
calculation tools mentioned in the article increase the 
precision of number  representation.  
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