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Abstract. A servo control with unknown system parameters and the constraints imposed on the maximal position and velocity is considered. The 
barrier Lyapunov functions approach is applied to assure the preservation of bounds in any conditions. The system performance is compared for 
three cases of the controller design: based on quadratic Lyapunov functions, based on barrier Lyapunov functions if only position constraints are 
imposed and based on barrier Lyapunov functions if both position and velocity bounds are present. The tuning rules are discussed and several 
numerical experiments demonstrating features of the proposed control and the influence of the parameters are presented. 
 
Streszczenie. Opisano problem sterowania napędowym układem nadążnym z nieznanymi parametrami i ograniczeniami nałożonymi na 
maksymalne wartości położenia i prędkości. Porównano właściwości trzech układów regulacji: ze sterowaniem zaprojektowanym na podstawie 
kwadratowych funkcji Lapunowa, ze sterowaniem zaprojektowanym na podstawie barierowych funkcji Lapunowa i ograniczeniem na położenie, oraz 
ze sterowaniem zaprojektowanym na podstawie barierowych funkcji Lapunowa przy ograniczeniach na położenie i prędkość. Opisano szereg 
eksperymentów, które ilustrują charakterystyczne właściwości układu regulacji i dostarczają wniosków co do wyboru parametrów algorytmu 
sterowania. (Adaptacyjne sterowanie nadążnego układu napędowego z ograniczeniami z zastosowaniem barierowych funkcji Lapunowa) 
 
Keywords: nonlinear control, adaptive control, servo control. 
Słowa kluczowe: sterowanie nieliniowe, sterowanie adaptacyjne, sterowanie napędem nadążnym. 
 
Introduction 

Servo systems are commonly used in various branches 
of industrial automation, robotics, motion control etc. It is 
well known that the acceptable and save operation of servo 
drives requires not only a precise tracking of a reference 
position but also the rigorous handling of constraints 
imposed on a position and/or speed during any dynamic 
transient. Any violation of the constraints can lead to 
performance degradation, hazards, or system damage. 
Nonlinear adaptive control is widely applied to design high-
performance servo systems in the presence of unknown 
plant parameters. Usually the controller design is based on 
control Lyapunov functions (CLF) and backstepping 
techniques. Quadratic Lyapunov functions (QLF) are 
commonly used to assure the system stability, but 
unfortunately such approach does not guarantee that the 
constraints may be imposed a priori and fulfilled during any 
transient conditions.  

Several approaches to control nonlinear systems with 
constraints were investigated. Among them, the nonlinear 
model predictive control seems to be promising. Recently, 
the use of the so called barrier Lyapunov functions (BLF) in 
control synthesis has been proposed for constraint handling 
in Brunovsky type systems [1], nonlinear systems in strict 
feedback form [2], adaptive control etc. [3,4]. The BLF 
approach applies the backstepping technique but allows to 
keep the system output (or all state variables) inside the 
predefined constraints. Although the theory of stability 
investigation by BLF is well established, only a few practical 
applications are reported [5,6]. The obtained control laws 
are more complex than those resulting from quadratic 
Lyapunov functions. Applying BLF with adaptive 
backstepping leads to three groups of design parameters: 
the bounds imposed on the output or the state variables, 
the gains that influence the speed of the error system 
convergence to zero, and the adaptive loop gains that affect 
the adaptive parameter behaviour. The interaction among 
these parameters as well as the influence of the design 
parameters on the maximal control value remain important 
problems in the controller design.  

The aim of the presented brief is to demonstrate the 
possibility of BLF applications in servo systems design, to 
provide the systematic description of the design procedure 
and to formulate some rules for the design parameters 
selection. The considered combination of assumptions are: 

output constraint + unknown model parameters and full 
state constraint + unknown model parameters. The 
proposed approach will enable the designer to impose the 
constraints that will be preserved during any transient 
conditions.  
Plant model and control objectives 

The same approach may be used for rotational or linear 
motors, but without the loss of generality the liner motion 
notation is applied. Therefore a linear servo is considered 
and the model is described by  

(1) vx
dt

d
 , 

(2) oFiv
dt

d
m  , 

where x, v is the forcer position and velocity, m – the forcer 
mass, φ represents the coefficient converting the motor 
current i into the thrust force, and Fo is an external load 
force, acting against the motion. The motor current i is 
supplied by a PWM inverter working in a current control 
mode and it is assumed that this loop is much faster than 
mechanical dynamics, so the motor current i is considered 
as the control input.  

 It is assumed that the parameters m>0, φ>0, are 
unknown, constant or slowly varying. Although the constant 
φ is usually provided by the motor manufacturer, this 
information must not be trusted. This constant may vary 
with the motor temperature, PWM conduction mode, or, for 
some tubular linear motors with permanent magnets build in 
the inner part, it may be noticeably lower if the forcer 
operates at the ends of the inner part. It is assumed that the 
load may be modelled as a nonlinear, memoryless function 
of the position and the velocity and that this model may be 
represented as a linear combination of known nonlinear 
functions ξ with unknown parameters A: 

(3) ),(),( vxAvxF T
o  . 

Such models are natural if the load is approximated 
using any approximation technique: artificial neural 
networks, fuzzy modelling, polynomial approximation etc. 
The number of unknown parameters and the approximation 
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basis ξ may be decided for the particular application. For 
the sake of brevity it is assumed here that the model (3) is 
accurate, but it is possible to consider inaccurate 
approximation with a bounded approximation error ε: 

(4)   ),(),( vxAvxF T
o . 

In order to get rid of the difficulties caused by the unknown 
control gain φ, the motion equation (2) is transferred into  

(5) ),( vxAiv
dt

d T
o   , 

where 

(6) AA
m

o 
 1

,  . 

The control objective is that the motor position has to follow 
a smooth reference xd. It is assumed that the reference is 
bounded 

(7) max)( xtxd  , 

the reference derivatives are bounded as well, and the 
motor position must be constrained for any t by a pre-
defined bound 

maxxx   

(8) xtx )( . 

If the tracking error is denoted by 

(9) xxe dx  , 

the constraint (8) is equivalent to  

(10) max,)( xte xexexx  . 
 

Lyapunov functions 
 Lyapunov stability theory will be used to construct the 
stabilizing control for the discussed problem. For the sake 
of completeness, some preliminaries will be given in this 
section.  

Definition 1: Let RRV n :  be a continuously 
differentiable, proper, and positive definite function defined 
with respect to the nonlinear system ),( uxfx  . Let us 

denote ),(),( uxfVuxV T
x . V(x) is a control Lyapunov 

function (CLF) for the system ),( uxfx   if, for all 0x , 

there exists a u such that 0),( uxV . If PxxxV T)(  for 

some positive definite P, it is called a quadratic Lyapunov 
function (QLF).  

Definition 2. [2] A Barrier Lyapunov Function (BLF) is a 
scalar function V(x), defined with respect to the system 

)(xfx   on an open region D containing the origin, that is 

continuous, positive definite, has continuous first-order 
partial derivatives at every point of D, has the property 

)(xV  as x approaches the boundary of D, and 

satisfies MtxVtM  ))((0,  along any system 

trajectory starting inside D. 

Several functions may be considered as candidates for 
BLF, providing symmetric or asymmetric domain D, but a 
commonly accepted form of a single variable BLF 
corresponding to the interval ),( D  is 

(11) 
22

2
log

2

1
)(

x
xV




 . 

It is straightforward to obtain  

(12) 
22

)(
x

xx
xV




 . 

The application of BLFs to proving that the system fulfils the 
output or state constraints follows from the lemma below. It 
is a modified version of lemma 1 in [4] and the prove is 
omitted for brevity. 
 

Lemma 1 
Consider a smooth dynamical system ),,( wxtfz  , with 

the state variables Twxz ],[ . Let Vi(xi) be a BLF 

satisfying xiiii xifxV )( , let )(wQ  be a QLF. 

Let )()()dim(
1

wQxVV ii
x

i
  . If the inequality 

0



 f
z

V
V

T
  holds anywhere in the set 

 xiixwxS  :),( , then any trajectory which fulfills the 

initial constraints xiixi  )0(  remains in S for any t.  

In lemma 1 the state is split into the constrained variables x 
and the unconstrained variables w. For each xi a BLF is 
constructed, while a QLF may be used for w.  

Several techniques of proving stability with the use of BLF 
may be suggested [2,3,4]. Below, the approach proposed in 
[4] is investigated.   
 
QLF control design 
 Let us forget for a moment about the constraints (8) and 
design the controller using QLFs. The adaptive 
backstepping scheme [7] will be used to design the 
controller. The velocity will be the ‘virtual control’ for the 
position tracking. Let us consider the error equation  

(13) vxe dx   , 

and the desired ‘virtual control’ trajectory vd with the tracking 
error defined as 

(14) vve dv  . 

The desired ‘virtual control’ dd xv  will be designed to 

guarantee the wanted convergence of the error xe . 

Considering the following QLF 

(15) 2
1 2

1
xeV   

allows to conclude that the desired ‘virtual control’ vd 

(16) xxdd ekxv   , 

where 0xk  is a design parameter, will generate the 

tracking error dynamics  

(17) vxxvxxddx eekeekxxe   , 

and  

(18) vxxx eeekV  2
1
 . 

During the second stage of the backstepping procedure the 
velocity error is considered: 

(19)   110  TT
ddv AiAivvve   , 

where new variables are defined as 

(20) ],[],,[ 101
T

d
TTT vAA   . 
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The derivative of the reference speed is given by 

(21)  vxxxdd eekkxv   , 

so, fortunately, it is available for the control algorithm and ξ1 
in (20) is the known function. Parameters A1 in (20) are not 
known, therefore they will be replaced by adaptive 

parameters ]ˆ,ˆ[ˆ
01
TT AA  . 

The control variable i will be designed using the QLF  

(22) 1
1

1
2

12
~~

2

1

2

1
AAeVV T

v
  , 

where  

(23) 111
ˆ~
AAA   

denotes the adaptation error and positive definite Γ is the 
matrix of the design parameters of appropriate dimensions. 
Plugging in (17,18,19) into  

(24) 1
1

112
~~
AAeeVV T

vv
    

allows to calculate the Lyapunov function derivative 

(25)  )( 11
2

2 Tvvxxx AieeeekV 1
1

1
~~
AAT
 . 

The control variable i will be designed to compensate the 
unnecessary components in (25) and to introduce the 
stabilizing component, so 

(26) vv
T

x ekAei  11
ˆ  , 

where 0vk  is a design parameter. Such control allows to 

describe the tracking error by 

(27) 11
~  T

xvvv Aeeke   , 

and to represent the Lyapunov function derivative as 

(28) )
~

(
~

1
1

11
22

2 AeAekekV v
T

vvxx
   . 

As 11
ˆ~
AA
  , the differential rule describing the adaptation 

may be used to guarantee that (28) is non-positive for any, 

unknown 1
~
A . The simplest way is to cancel the last 

component in (28): 

(29) 11
ˆ  veA


 

By using the Lasalle’s-Yoshizawa theorem [7], (27, 28) 

guarantees that all errors 1
~

,, Aee xv  are uniformly bounded 

and ev, ex are regulated to zero. Since the reference xd is 
bounded, x is bounded as well. The boundedness of vd 
follows from the boundedness of dx  and dv  in (16). 

Combining this with (26), we find that the control is also 
bounded. Although the boundedness of state variables is 
proven using QLF, it is impossible to define the constraints 
a priori. The maximal value of each state variable depends 
on the design parameters and initial conditions.  

 
Remark 1: It is well known that similar results may be 
obtained with some other adaptation rules. For example,  

(30) ),ˆ(ˆ
111   veAprojA


, 

where ),( proj  is a projection operator assuring that 

  [7]. Although (30) allows to influence the bounds for 

adaptive parameters, it will not provide a priori constraints 
for the state variables.  

Remark 2: The design parameter xk  influences not only the 

values of xe , but also the ‘virtual control’ dv  in (16), and so 

the error ve  in (19). Therefore the maximal value of the 

current (26) depends on both design parameters xk  and 

vk , although only vk  is explicitly visible in (26). 

Remark 3: State variables may be constrained by the initial 

value of the Lyapunov function.  As 02 V , )0()( 22 VtV   

along any trajectory of the system (17,27). Therefore, 

)0(
2

1
2

2 Vex  , so )0(2 2Vex  . Unfortunately, 

0
1

1
1

22
2

~~

2

1

2

1

2

1
)0(








 

t

T
vx AAeeV   depends on the 

initial guess of the unknown parameters and the obtained 
bound is not effective. 

Remark 4: The error dynamics (17) and (27) may be 
described together as: 

(31) 











































11
~

0
1

1


T

v

x
v

x

v

x

Ae

e
k

k

e

e




 

and the design coefficients may be easily selected to 
assure predefined eigenvalues 21, ss  of the state matrix in 

(31): 

(32) 01)( 2121

2
 ssssk

k
v

v 


, 

(33) )( 21 ss
k

k v
x 


. 

It is also easy to notice that complex eigenvalues (so 
oscillatory behavior of the system (31)) will be observed if 
and only if  

(34) 

4

2









 v

x
k

k . 

Remark 5: Having positive position tracking error, it is easy 
to observe that it will increase (tending to violate the bound) 
if  

(35) xxvvxxx ekeeeke  0 . 

Taking into account that  

(36) xxdv ekvxe   , 

this is equivalent to  

(37) 0 vxd , 

so the increase of position error cannot be avoided by any 
selection of the design parameters.  
Similarly, a positive velocity tracking error will be increased 
if  

(38) xvv
T

v eekAe  11
~

0   . 

Summing up, although QLF design allows to influence 
the error system dynamics by a proper selection of design 
parameters, it will not provide any tool to impose constraints 
for position or velocity a priori.  

BLF design with position constraints 
 In order to satisfy the position error constraints (10), the 
BLF will be applied during the first stage of backstepping: 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 4/2016                                                                                      115 

(39) 
22

2

1 log
2

1

xex

ex

e
V




 . 

The derivative of the BLF is given by 

(40) 
221 )(
xex

xx

e

ee
xV




 , 

hence plugging (17) into (40) gives 

(41) 
 

221 )(
xex

vddx

e

evxe
xV






 . 

The application of the ‘virtual control’ defined by (16) will 
result in the error equations (17) and (19) and will provide  

(42) 
2222

2

1 )(
xex

vx

xex

x
x

e

ee

e

e
kxV





 . 

As the constrains are imposed only on the first state 
variable (position), the control variable i will be designed 
using the Lyapunov function 

(43) 1
1

1
2

12
~~

2

1

2

1
AAeVV T

v
  , 

where V1 defined in (39) is a BLF. 
Substitution of (42, 19) allows to calculate the Lyapunov 
function derivative as 

(44)  

1
1

111

2222

2

2

~~
)(

)(

AAAie

e

ee

e

e
kxV

TT
v

xex

vx

xex

x
x

















 

The control variable i will be designed to compensate the 
unnecessary components in (34) and to introduce the 
stabilizing component, so 

(45) vv
T

xex

x ekA
e

e
i 


 1122

ˆ  , 

where 0vk  is a design parameter. This control gives the 

velocity tracking error  

(46) 
2211

~

xex

xT
vvv

e

e
Aeke


    

and the Lyapunov function derivative fulfills  

(47) 




 


 

1
1

11
2

22

2

2
~~

)( AeAek
e

e
kxV v

T
vv

xex

x
x

  . 

Any of the adaptation rules (29) or (30) assures that  

(48) 02
22

2

2 


 vv
xex

x
x ek

e

e
kV . 

The following corollary abstracts the main features of the 
obtained system.  

Corollary 1.  
Consider the closed loop system (17), (46) with any of the 
adaptation laws (29) or (30) and the reference position 
trajectory, under all assumptions formulated above. 
Consider any trajectory with initial conditions fulfilling 

exxe )0( , then the following properties hold along this 

trajectory: 
1. The variables T

vx Aee 1
~

,,  remain inside a compact set and 

the output fulfils the constraint (8). 
2. All closed loop signals are bounded. 
3. The tracking errors ex, ev converge to zero asymptotically.  

Sketch of the proof: 

1. )0(2V  is bounded and as 02 V , )0(22 VV   along the 

considered trajectory. The lemma 1 yields that 

exx te )( . Another constraint for the tracking error may 

be obtained noticing that )0(log
2

1
222

2

V
exex

ex 



 and thus 

)0(2 21 V
exx ee  . Finally, because of (7) and (9), we 

get (8). Similarly we may derive that )0(
2

2Vev 
  and 

)(

)0(2~
1

min

2
1 



V

A , where )(min   denotes the smallest 

eigenvalue of the symmetric matrix   .  

2. As T
vx Aee 1

~
,,  are bounded, 1Â  are bounded also. From 

(16), (21) the desired ‘virtual control’ and it’s derivative are 

bounded as well. Therefore the functions 1  are bounded 

and from (45) the control is bounded.  
3. The tracking error asymptotic convergence may be 

obtained by demonstrating that 2V  is bounded and making 

use of Barbalat’s lemma [8]. 

Remark 6: The component 
22
xex

x

e

e


 in (45) suggests that 

the control variable increases if exxe  . Although the 

inequality exx te )(  is always fulfilled and the control is 

bounded, the maximal value of the control variable depends 
on all design parameters (similarly as it was explained in 
Remark 2) and requires careful investigation. Usually the 
initial jump of the current is the critical one, and this may 

happen to be )0(
)0(

1
)0(

22 xxv
xex

ekk
e

i 












 . It is also 

obvious that the ‘adaptive’ component 11
ˆ TA  contributes to 

the current values. 
 
BLF design with position and velocity constraints 
 The constraints imposed on the velocity may be 
preserved if a BLF will be used also during the second 
stage of the backstepping design. Therefore,  

(49) 1
1

122

2

12
~~

2

1
log

2
AA

e
VV T

vev

ev 






, 

where V1 defined in (31) is a BLF and ev  is a constraint 

imposed on the tracking error ve . The Lyapunov function 

derivative may be represented as 

(50) 1
1

12222
2

2
~~

)( AA
e

ee

e

ee
ekxV T

vev

vv

xex

vx
xx

 








 

and after plugging in (19) 

(51) 

1
1

122
11

2222

2

2

~~)(

)(

AA
e

Aie

e

ee

e

e
kxV

T

vev

T
v

xex

vx

xex

x
x




















. 
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Once again, the control variable i will be designed to 
compensate the unnecessary components in (51) and to 
introduce the stabilizing component, so 

(52) vv
T

xex

vevx ekA
e

ee
i 




 1122

22
ˆ)(  , 

where 0vk  is a design parameter. This control gives the 

velocity tracking error  

(53) 
22

22

11
)(~

xex

vevxT
vvv

e

ee
Aeke




   , 

and the Lyapunov function derivative fulfills  

(54) 

)
~

(
~

1
1
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2

22

2

2

A
e

e
A

e

e
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e

e
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vev

vT

vev

v
v

xex

x
x



















. 

As 11
ˆ~
AA
  , the differential rule describing the adaptation 

may be used to guarantee that (54) is non-positive for any, 

unknown 1
~
A . The simplest way is to cancel the last 

component in (54) by selecting: 

(55) 1221
ˆ 




vev

v

e

e
A


, 

which results in  

(56) 
22

2

22

2

2
vev

v
v

xex

x
x

e

e
k

e

e
kV





 . 

Therefore,  

(57) 02 V  in   evvexxvx eeAeeS  ,:
~

,, 1  . 

Note that not any velocity constraint is applicable. Let us 
consider the maximal value of the desired ‘virtual control’: 
(58)    

max
0,0,

max maxmax dxxd
te

d
te

d vekxvv
exxexx



 , 

(59) exxd
t

d kxv 



0
max max  

and assume that the motor velocity must be constrained for 
any t by a pre-defined bound maxdv v  

(60) vtv )( . 

This constraint will be satisfied if  

(61) evdvv vte  :)( max . 

A designer may be interested in constraining the gap 
between the desired position derivative and the actual 
velocity: 
(62) )()()( tvtxtE d   . 

As  

(63) xxvxxdd ekeekvvvxE   , 

it may be bounded by a proper choice of ex  and ev : 

(64) exxev kE  . 

The following corollary summaries the main features of the 
obtained system.  
 
 
 

Corollary 2.  
Consider the closed loop system (19), (53) with any of 

the adaptation laws (55), and the reference position 
trajectory, under all assumptions formulated above and the 
given bounds vx  , . Assume that the system design 

parameters ,, vx kk  are selected such that there exists a 

trajectory with initial conditions fulfilling exxe )0( , 

evve )0(  (defined according to (10) and (61)), then 

the following properties hold along this trajectory: 

1. The variables 
T

vx Aee 1
~

,,  remain inside a compact set 

and the output fulfils the constraints (8) and (61). 
2. All closed loop signals are bounded. 
3. The tracking errors ex, ev converge to zero 
asymptotically.  
 

Sketch of the proof: 

1. )0(2V  is bounded and as 02 V , )0(22 VV   along the 

considered trajectory. Lemma 1 yields that exx te )(  

and evv te )( . Another constraint for the tracking error 

may be obtained noticing that )0(log
2

1
222

2
V

exex

ex 



, thus 

)0(2 21 V
exx ee  . Similarly, it may be proved that 

)0(
2

2

1
V

evv ee 


 . Finally, (8) is obtained because of 

(7) and (9) and (61) yields (60). Using analogical reasoning, 

it can be derived that )0(
2

2Vev 
  and 

)(

)0(2~
1

min

2
1 



V

A , where )(min   denotes the smallest 

eigenvalue of the symmetric matrix   .  

2. As T
vx Aee 1

~
,,  are bounded, 1Â  are also bounded. The 

desired ‘virtual control’ and it’s derivative are bounded as 
well. Therefore the functions ξ1 are bounded and from (52) 
the control is bounded.  
3. The tracking error asymptotic convergence may be 

obtained by demonstrating that 2V  is bounded and making 

use of the Barbalat’s lemma [8]. 
Remark 7: As it is visible in (59), (61) there exists an implicit 
relation among the design parameters, initial conditions and 
the imposed constraints. The imposed velocity constraint 

v  must be bigger than the maximal value of the desired 

‘virtual control’ (59), which depends on the imposed 
constraints ex  and the gain kx used in the position control 

loop. All parameters influence the maximal value of the 
control variable, hence the feasibility conditions have to be 
checked carefully as it will be demonstrated by examples.  
Remark 8: The property (57), and therefore Corollary 2 will 
hold also with other adaptation rules, corresponding to (30), 
for example: 

(65) ),ˆ(ˆ
12211  




vev

v

e

e
AprojA


, 

where ),( proj  is a projection operator assuring that 

 . 
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Numerical experiments 
 The simulated liner actuator with the parameters m=8kg, 
and φ=39N/A is supposed to track the desired position 
provided by the filtered sinusoid: 

(66)   ][)3sin(3.0
12

1
)(

22
1 mt

TsT
txd










  LL ’ 

where T=0.1s and denotes the Laplace transform. The 
desired trajectory is presented in fig.1. 
It is assumed that the actuator works against the load 
described by  

(67) ][)2sin()(),( 2 NxvBvsignAvvxFo  , 

with unknown coefficients A and B, hence, according to (20)  

(68) 
T

d
T

T

xvvsignvv

BAmA

)]2sin(),(,[

],,,[
1

2
1

1








. 

It is assumed that none of the motor or load parameters are 
known. Therefore the initial values of adaptive parameters 
are selected as 

(69)  ]0,0,5.0[)0(ˆ
1 

m
AT  . 

The command (66) is presented at the moment when  
x(0)=-0.03 [m] and v(0)=-0.1 [m/s], so 

1.0)0(,03.0)0(  Eex . 
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Fig.1. Desired position trajectory dx  and its derivative dx  
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Fig.2. Position tracking error xe  and ‘velocity gap’ E  for different 

gains kx (kv=1) 
 
QLF based control 
 The control (26) and the adaptive law (29) were applied 
with design coefficients kv=1 and kx=1;3;9. In all cases the 
errors tend to zero. The initial part of system responses are 

plotted in fig. 2, 3. It is noticeable that the position tracking 
error increases at the beginning of the transient and it is 
impossible to impose a predefined constraint on the error 
maximal value. For the smallest gain kx=1 the biggest value 
of the position error is observed. Increasing the gain kx 
allows to decrease the position error, but the ‘virtual control’ 
tracking error the maximal current are increased. Also 
manipulations with the gain kv do not guarantee that the 
position tracking error will remain in the predefined bounds, 
as it is presented in fig. 4,5. In any case the bigger gain 
implies the bigger values of the motor current. 

 
Fig.3. ‘Virtual control’ tracking error ve  and control i  for different 

gains kx (kv=1) 
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Fig.4. Position tracking error xe  and ‘velocity gap’ E  for different 

gains kv (kx=1) 

 
Fig.5. ‘Virtual control’ tracking error ve  and control  i  for different 

gains kv (kx=1). Note different time-scale for the last plot 
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BLF based control with position constraints  
 The control (45) and the adaptive law (29) were applied 
with design coefficients kx=1; kv=1. Trajectories for QLF-
designed control with these parameters are plotted as 
continuous lines in fig. 2-5. The influence of the imposed 
constraint on the system performance was tested in three 
cases: 2.0ex ; these constraint was fulfilled by the QLF-

designed system, 05.0ex – violated by the QLF-

designed system but relatively far from the initial condition 
03.0)0( xe  and 04.0ex – violated by the QLF-

designed system but closer to the initial condition. The 
asymptotic stability of all errors is observed. The starting 
part of the transients are plotted in fig. 6,7. Even the 
introduction of relatively big constraint 0.1 (that was fulfilled 
by the QLF-designed system with the same parameters) 
makes the position tracking error smaller and smoother, 
although the regulation time remains relatively long. The 
imposed constrained is preserved in all cases with a 
sufficient, save distant between the extremal value and the 
bound. If the constraint gets tighter the maximal ‘virtual 
control’ tracking error and the ‘velocity gap’ increase. 
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Fig.6. Position tracking error xe  and ‘velocity gap’ E  for different 

constraints ∆ex  (kx=1, kv=1) 
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Fig.7. ‘Virtual control’ tracking error ve  and control  i  for different 

constraints ∆ex  (kx=1, kv=1) 
 

The maximal current increases significantly, what is not 
surprising as the first component in the control (45) is  

(70) 
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Because of large oscillations of ve  observed, this system 

requires a careful tuning of adaptation gains in (29). 
Therefore, considering all this, the application of a velocity 
constraint that will contribute to current restriction and will 
damp the oscillations is highly recommended.  
 
BLF based control with position and velocity constraints  
 The control (52) and the adaptive law (55) were applied 
with design coefficients kx=1; kv=1 and the constraints 
∆ex=0.05 [m] and ∆ev = 1; 0.5; 0.3 [m/s]. In any case the 
imposed bounds are preserved during the transient. The 
initial parts of system history is presented in fig. 8 and 9. 
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Fig.8. Position tracking error xe  and ‘velocity gap’ E  for different 

constraints ∆ev  (kx=1, kv=1, ∆ex=0.05) 
 

It is noticeable, that the bound 1ev  is too large to 

assure the acceptable system behavior. Tightening the 
bound allows to decrease the ‘velocity gap’ and the 
maximal current as well.  
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Fig.9. ‘Virtual control’ tracking error ve  and control  i  for different 

constraints ∆ev  (kx=1, kv=1, ∆ex=0.05) 
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Fig.10. Position tracking error xe  and ‘velocity gap E  for different 

design methods 
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Fig.11. ‘Virtual control’ tracking error ve  and control  i  for different 

design methods 
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Fig.12. Estimates of parameters m, A, B for different design 
methods 
 
 
 

System performance with bounded adaptive parameters  
 All systems tested above demonstrate robustness 
against imperfect reconstruction of the load. Tuning of the 
adaptive gains in (29) was not difficult and the maximal 
values of adaptive parameters were reasonable. In spite of 
this, the system performance with a priori constraints 
imposed on adaptive parameters was tested. The control 
strategies (26), (45), (52) with appropriate adaptive laws 
(30), (62) were applied with constraints ∆ex=0.05 [m] and 
∆ev =0.3 [m/s]. The design coefficients vk  and xk  were 

selected according to (32, 33) to provide eigenvalues of the 
state matrix in (31) are 4,2 21  ss . Estimated 

parameters were bounded from 50% to 300% of their exact 
value. The speed of estimation (parameters Γ) was selected 
individually for the best performance. The results are plotted 
in fig. 10-12. The transient of the position error is the worse 
for the QLF-designed system and the best for the BLF-
designed with position and velocity constraints. 
 
Conclusions 
 Numerical experiments have proven that the described 
modification of adaptive backstepping algorithm based on 
barrier Lyapunov functions may be effectively implemented 
for servo systems control, where some physical quantities 
like position, speed and motor current have to be bounded. 
The BLF-designed system with a position constraint only 
demonstrates oscillatory behavior and this is also visible in 
transients of adaptive parameters in fig. 12. The proper 
choice of control system parameters was not difficult, 
especially in the case of coexisting position and velocity 
constraints. This set of constraints is highly recommended 
and it outperforms a QLF-designed one and a BLF-
designed with position constraint only. The derived system 
stability and convergence was confirmed by simulations. 
State variables (position and velocity) remain bounded, the 
motor current was acceptable.  
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