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Minimal-phase positive electrical circuits

Abstract. Minimal-phase positive continuous-time linear electrical circuits are addressed. It is shown that positive asymptotically stable electrical
circuits with distinct poles and zeros are minimal-phase systems. Conditions are established for electrical circuits to be minimal-phase systems.
Sufficient conditions for cancelation of zeros and poles of minimal-phase electrical circuits are proposed.

Streszczenie. W pracy sg analizowane dodatnie minimalnofazowe obwody elektryczne opisane réwnaniami stanu i macierzami transmitancji
operatorowych. Wykazano, Ze dodatnie stabilne asymptotycznie obwody elektryczne z rbéznymi zerami | biegunami sg obwodami
minimalnofazowymi. Podano warunki minimalnofazowo$ci obwodéw elektrycznych, oraz warunki wystarczajgce upraszczania zer i biegunéw w
obwodach elektrycznych. Rozwazania ogélne zilustrowano przyktadami obwoddéw elektrycznych. (Dodatnie minimalnofazowe obwody

elektryczne).

Keywords: minimal-phase, positive, asymptotically stable, electrical circuit, pole, zero, cancelation.
Stowa kluczowe: minimalnofazowos$¢, dodatniosé, stabilnos¢ asymptotyczna, obwody elektryczne, zera, bieguny.

Introduction

In electrical circuits the state variables and outputs take
only non-negative values for any non-negative initial
conditions and inputs. The positive standard and fractional
order electrical circuits have been investigated in many
papers and books [1-7]. A new class of normal electrical
circuits has been introduced in [8]. The minimum energy
control of electrical circuits has been investigated in [9].
Positive linear systems consisting of n subsystems with
different fractional orders have been addressed in [10, 11].
Decoupling zeros of positive linear systems have been
introduced in [12].

Determination of the state space equations for given
transfer matrices is a classical problem, called the
realization problem, which has been addressed in many
papers and books [13-17]. An overview of the positive
realization problem is given in [13, 14, 16, 18]. The
realization problem for positive continuous-time and
discrete-time linear system has been considered in [16, 19-
27] and for linear systems with delays in [16, 19, 24, 27-29].
The realization problem for fractional linear systems has
been analyzed in [16, 30-36] and for positive 2D hydrid
linear systems in [29]. A new modified state variable
diagram method for determination of positive realizations
with reduced number of delays for given proper transfer
matrices has been proposed in [37].

In this paper the minimal-phase realization problem and
minimal-phase  positive electrical circuits  will be
investigated.

The paper is organized as follows. In section 2 some
preliminaries on positivity and asymptotic stability of
continuous-time linear systems are recalled. Some
definitions, theorems and examples of positive electrical
circuits are presented in section 3. Main results of the paper
are given in sections 4 and 5. Minimal-phase realization
problem of continuous-time linear systems is discussed in
section 4 and minimal-phase positive electrical circuits are
investigated in section 5. Concluding remarks are given in
section 6.

The following notation will be used: R - the set of real

numbers, R™™ - the set of Nxm real matrices, RT™ -
the set of Nxm real matrices with nonnegative entries,

R™M(s) - the set of Nxm rational matrices in s with real
coefficients, |,-the nxn identity matrix.

Preliminaries
Consider the continuous-time linear system

(1a) Xx=AXx+Bu,
(1b) y=Cx+Du,
where xeR", ueR™, yeRP are the state, input and

output vectors and AeR™", BeR™", CeR”",

DeRPM,

Definition 1. [18] The system (1) is called (internally)
positive if x=x(t)e R and y=y(t)eR?, te[0,+0] for
all X, =x(0)eR" and u=u(t)eRT, te[0,+0].
Theorem 1. [18] The system (1) is positive if and only if

(2) AeM,, BeRT™, CeRP", DeRrP™,

where M, is the set of nxn Metzler matrices, i.e. the

matrices with nonnegative off-diagonal entries.
The transfer matrix of (1) is given by

(3) T(s)=C[Ins—A]"B+D=wei}{pxm(s),
d(s)

where N(S) is the polynomial matrix and d(s) is the
polynomial.
For single-input single-output (SISO, m=p=1) linear
system the transfer function can be written in the form
W Te)= nes) _ bnnsn +bn_1::“ +otbis+by

dis) s"+a, ;s"+..+as+a,

Definition 2. The roots S, S, ,..., S, of the equation
d(s)=s"+a, ;" +..+a;s+a,

(5)
= (S - Sl)(s - 52)"'(S_Sn) =0

are called the poles of the linear system.
Definition 3. The roots 510, Sg Sg of the equation

n(s)=b,s" +b, ;"' +...+b;s+b,

(6) 0 0 0
=b,(s—5;)(5—-5;)..(s—5,)=0

are called the zeros of the linear system.

0 <0 0
The poles s;, S,,..., S, and the zeros s, S,,..., S, are
called distinct if s; #s; for i+ ] and siO # S(j) for i#]j,

i, j=1,...,n, respectively.
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Definition 4. The linear system is called minimal-phase if

(7) Res, <0 and Resy <0 for k=1,...n,

where Re denotes the real part of the complex number.
Definition 5. [9] The positive system (1) is called
asymptotically stable if

(8) lim x(t) =0 forall X, € R .
t—ow

Theorem 2. [18] The positive system (1) is asymptotically
stable if and only if

9) Re 4 <0 for k=1,...,n,
where 4, is the eigenvalue of the matrix Ae M, and

(10)  det[l,A—Al=(A-A)A-A)(A—4).

Note that the set of poles {s,, S, ,..., S,}in general case is

the subset of the set of eigenvalues {4, , 4, ,..., 4,}[15].
Definition 6. The matrices A, B, C, D satisfying (2) are
called a positive realization of a given transfer matrix T (S)
if they fulfill the equality (3).
Positive electrical circuits

Consider the linear continuous-time electrical circuit
described by the state equations
(11a)  x(t) = Ax(t) + Bu(t),
(11b) y(t) = Cx(t) + Du(t),

where x(t)eR", ut)eR™, yt)eRP are the state,

input and output vectors and AeR™", BeR™™,

CeR”", DeR™™.

It is well-known [3] that any linear electrical circuit
composed of resistors, coils, capacitors and voltage
(current) sources can be described by the state equations

(11). Usually as the state variables x;(t),..., X,(t) (the
components of the state vector X(t)) the currents in the

coils and voltages on the capacitors are chosen.
Definition 7. [3] The electrical circuit (11) is called

(internally) positive if x(t)eR! and y=yt)eRP,
t €[0,+0] for any X, =x(0) e R and every u(t)eRT,
t € [0,4<0] .

Theorem 3. [3] The electrical circuit (11) is positive if and
only if

(12) AeM,, BeR!"™, CeRP", DeRP™,

Theorem 4. The linear electrical circuit composed of
resistors, coils and voltage sources is positive for any
values of the resistances, inductances and source voltages
if the number of coils is less or equal to the number of its
linearly independent meshes and the direction of the mesh
currents are consistent with the directions of the mesh
source voltages.

Proof. Proof is given in [3].

Theorem 5. The linear electrical circuit composed of
resistors, capacitors and voltage sources is not positive for
all values of its resistances, capacitances and source
voltages if each its branch contains resistor, capacitor and
voltage source.

Proof. Proof is given in [3].

Theorem 6. The electrical circuit shown in Figure 1 is

positive for any values of the conductances G,
k=0,,..,n; capacitances Cj, j=1L..,n and source

voltage e.

Loty ody.
EEE

Fig. 1. Positive electrical circuit.

Proof. Proof is given in [3].

Theorem 7. The R, L, C, e electrical circuits are not positive
for any values of its resistances, inductances, capacitances
and source voltages if at least one its branch contains coil
and capacitor.

Proof. Proof is given in [3].

Theorem 8. The linear electrical circuit of the structure
shown in Figure 2 is positive for any values of its
resistances Ry, k=12,..,n, inductances Ly,

k =2,4,....,n, and capacitances C,, k=1,3,...,n,.
Proof. Using Kirchhoff's laws we can write the equations

(13a) e, = Rkadstk+uk k=130,
di L
(13b) e0+ej:LjE+lej’ J:2,4,...,n2,

which can be written in the form

Fig. 2. Positive electrical circuit.
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Fig. 3. Positive electrical circuit.

4]
(14a) —| . |=A . |+Be,
dt|i i

where
€o
u |
1 i2 62
(14b) u=| .|, i=| .| e=|e,
u |
n n, _enz
and
(14c)
pdiop L L L R R R
RG R R, L L Ly
1 00 -0 11 0 --- 0
RG L L
1 00 -0 1 0 1 0
B= RC, eRTBEL L R,
1 00 -0 1 0 0 WL
RGy | b Ly |

From (14c) it follows that the electrical circuit is positive for
any values of its resistances R, , k=1,2,...,n, inductances

L., k=24,....n, and capacitances Cy, k=13,..,n,. o

Theorem 9. The linear electrical circuit of the structure
shown in Figure 3 is positive for any values of its

conductances Gy, GI'(, ij, k,j=1..,n, capacitances

Cy. k=1,...,n and source voltages ¢, k=1,...,n.

Proof. Proof is given in [3].

The state equations for the positive electrical circuit shown
in Figure 3 are given in [3].

Theorem 10. The positive electrical circuit G, C, is type is
unstable if it has at least one node with branches containing
only capacitors and current sources.

Proof. Proof is given in [3].

Theorem 11. The positive electrical circuit R, L, C, e type is
unstable if it has at least one mesh containing only the
inductances and source voltages.

Proof. Proof is given in [3].

184

Positive minimal-phase realizations of continuous-time
linear systems

First let us consider the SISO continuous-time linear
system with the transfer function (4). From (4) we have

(16) D=1lmT(s)=bh,
S—00
and the strictly proper transfer function has the form

Tp(s)=T(s)-D=C[l,s-A]"'B

(17a) by iS" .. +bs+b,  fi(s)
s"+a,,s" +..+as5+a, d(s)

where

(17b) b, =b, —b,a,, k=01,..n—1,

(17c)  A(s)=b, ;8" +..+bs+b,.

It is assumed that the poles s;, S, ,..

sg_l of (17) are distinct, real, negative and

., Sy and the zeros
s), SY....,
satisfy the conditions

(18) s <S¢ <8, for k=1,..,n—1.

It is well-known [16] that the strictly proper transfer function
(17) can be written in the form

N
(19a) Tsp (s)= k )
k=15~ Sk
where
(196) Ty = lim (s — 5 )Tep(8) =——)
S5,
H(Sk -Sj)

j=l1
JE3S
Note that T, >0 for k=1,....,n if and only if the poles and

zeros are distinct and satisfy the condition (18). In this case
we can choose ¢, >0, b, >0 so that

(20) Tk = Ckbk i k = 1,...,n
and the matrices
by
T _ b2 nx1
A=diag[s, s, SnleMy, B=| JleR,
by
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1)  C=[g ¢ - cyleRy”
are a positive realization of the transfer function (17).
Theorem 12. There exists minimal-phase realization (21),
(16) of the transfer function (4) if and only if the poles and
zeros of (17) are distinct, real, negative and the conditions
(18) are satisfied.
The proof and procedure for computation of the realization
are given in [38].

Now let us consider the m-inputs and p-outputs (MIMO)
continuous-time linear system with the strictly proper
transfer matrix

NG o)

22a T,(8)=
(22a)  Tgy(9)= a(s)
where
(22b)  d(s)=(s—5)(5—5,)...(S—5Sy),

(=S 6=S™) - (=5 (s Sn™)
(22c) N(s) = : .

0,1 0,n 0,1 0,N

(5—Spi)--6=sp ") - (s—spm)...(s—spm")
with distinct real negative poles s;, S, ,..., S, and distinct
real negative zeros s/}’ ..., sloln” LS, sg’mnpm

The transfer matrix (22) can be written in the form

(23a) T (5) = zn: Ti

where
(23) T = lim(s—5)Tyy(8) = — )
S
k H(Sk -$j)
e
and
(24) rank T, =1, <min(m, p) .

It is easy to check that if the conditions

(25) <S, fori=1..,p, j=L..m, k=1..n

0.k

are satisfied then T, e RP™ for k=1,..,n and it can be

written as the product

(268) Tk = Ck Bk )
where

Ck S ‘.REXF“ , Bk S ‘:lexm
(26b) and rankC, =rankB, =1, k=1,..,n

It can be shown that the matrices

A=blockdiag[l, s, I, s,]eM,,
@n |B "
B=| i |eR[™ C=[C, - C,JeRP",r=>r
B i=1

n

are a positive realization of the matrix (22).

Theorem 13. There exists a minimal-phase realization (27)
of the strictly proper transfer matrix (22) if and only if the
poles and zeros are distinct, real, negative and the
conditions (24) are satisfied.

Minimal-phase positive electrical circuits

First we shall show the essence of the approach on
simple examples of positive electrical circuits.
Example 1. Consider the positive electrical circuit shown in

Figure 4 with positive resistances R;, R,, R;,
capacitances C;, C, and source voltage e. As the state

variables we choose the voltages u;, U, on the capacitors
and as the output y their sum.

U U
A AN
FE -y o o VI
[\ A
C, C;
Rs
[

Fig. 4. Positive electrical circuit of Example 1.

Using Kirchhoff's laws we may write the equations

du, du du
28 e=RC,—L +R C,—L+C,—2
(28a) 1“1t 3( gt 2 dt)

du du du
28b =R,C R, C,—L+C
(28b) e 22d+u2+3[1d zdtj
and
(29)  y=u +u,.

The equations (28) and (29) can be rewritten in the form

d |y u
(30a) —| '|=A "|+Be,
dt|u, U,

(30b) y :C[”‘},
u,

where
__ R, +Ry R,
A= ClR(R +R)+RRs] - GIRI(R, +Rs) +RyRs]
| GIR(R+R)+RRs]  C[Ri(Ry +Ry) +RyRs]
(30c)
_ R,
B= Cl[Rl(R2+R3)+R2R3] I C:[l 1]
1
| GIR(Ry +Rs) +RyRs]
The transfer function of the electrical circuit has the form
T(s) :C[IZS—A]’l B=[1 1]
R, +R, -R, B
y CIR(R,+R))+R,R,] CIR(R,+R)+R,R;]
-R, R +R,
CIR(R, +R) +R,R;] CIR(R, +R)+R,R;]
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R,
CIR(R+R)+RRI|_n(s)

R d@s)’
C[R(R+R)+RR]

(31a) X

where
d(s) =C,C,[Ry (R, +R3) + R2R3]32
(31c)

+[C,(R, +R;)+Cy(Ry +Ry)Is +1=as* +bs+1.

The poles of the electrical circuit are

_ —b+b?-4a

S§§=——— 'S
2a 2

~b-+b? -4a

2a

(32)

and its zero is

2

B3) =

It is easy to see that the poles (32) and zero (33) satisfy the
condition (17) for any positive resistances R,, R,, R; and

capacitances C,;, C, since always b2 -4a>0.

Example 2. Consider the positive electrical circuit shown in
Figure 5 with positive resistances R;, R,, R;, inductances

L,, L, and source voltages €, e, . As the state variables
we choose the currents i, i, in the coils and as the output

y the voltages on the resistances R, , R, .

Fig. 5. Positive electrical circuit of Example 2.

Using Kirchhoff’s laws we may write the equations

. di ..
(34a) e =Ry, + le—t1+ Ry(i; —iy),

. di ..
(34b) e, =R,i, + de—t2+ Ry(i, —i))
and

35 | Riy
(35) y= R)i, |

The equations (34) and (35) can be rewritten in the form

oo LA
dt|i, i e,

(36b) y :CM'

2

where

"R+R, Ry 1

— 0
L L L
A= 1 1 , B= 1 ,
R, _RetRy 0o L
L2 L2 L2
R, 0
(36c) C-= )
0 R,

The transfer matrix of the electrical circuit has the form

ol a
T(s)=C[l,s—A'B=

0 R,
-1
(37a) |g Ri*tRs Ry 1
x L L L _NG
_Rs LRHR L L des)
L, L, L,
where
R/(R, + Ry +sL RR
(37b) N(5) = 1(Ry 3 2) 113 ,
R,R; R,(R; + Ry +5sL))
(370) d(s)=L, L252 +[L; (R, +R3)+ L, (R + Ry)]s
c
+Ry(Ry +Ry)+ R,Ry =as? +bs +c.
The poles of the electrical circuit are
—b+4b* —4ac —b-+/b* —4ac
(38) S = » Sy =
2a 2a
and its zeros are
(39) S{):—(R2+R3), Sg:_(R1+R3) _
L, L

It is easy to see that the poles (38) and zeros (39) satisfy
the condition (17) for any positive resistances R;, R,, R;

and inductances L, L, since always b> —4ac>0.
Example 3. Consider the positive electrical circuit shown in
Figure 6 with given positive resistances R;, R,, R,
inductance L, capacitances C;, C, and source voltage
€.

R,
« — W
1 R
- 5“16@ .=
R, L

Fig. 6. Positive electrical circuit of Example 3.

Using Kirchhoff's laws we may write the equations

du
40a e=RC,—L+u,,
( ) 11 dt 1
(40b) e=Ri+ Lﬂ,
dt
du,
(400) e= R2C2T+U2,
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which can be written in the form

q U Uy
41a —|u, |[=Au, |+Be,
(41a) at| 2
i i
where
0 0 1
Rlcl RICI
(41b) A= _ 0 |, B= !
R,C, R,C,
oo B
L L] L L ]
As the output y we choose
Uy

(42) y=u+Ri=C|u, |, C=[1 0 R].

The transfer function of the electrical circuit has the form

(43)
T(s)=C[l;s—A"'B
_ e _
S+L 0 L
RC RG
= 0O Rl O S+ 0 !
R,C, R.C,
0 0 S+— l
L L L]
1
=[1 0 R]
[ J[ | 1 I Rj
S+—— | s+ S+—
RCGA RGA L
(s+ ! ISJFBJ 0 0
R,C, L
X 0 (s+L s+Bj 0
RC, L
0 0 [s+L S+ !
I RCG ARG
_L_
RC,
X 1 :@
RC, | d(s)’
1
L
where
e e oae e
n(s)=| s+ S+— +| S+ S+ —
R,C, L/RC RC R,C, /L
(44)
oD
=|s+ S+— |—+| S+—— |— |,
R,C, L/RC RC /L

(45) d(s)= [s +

1 1 ( Rj
S+ S+—|.
R,C, j{ chzj L

The poles of the electrical circuit are

1 1 R
46 SS=——, S, = Sy = ——
(46) 1 RC, % 3

and its zeros are

0 1

@7 s =- , 2R
RZCZ

RR,C,

sy =

R
If RC, >R,C, and m > , then the poles and zeros

R,C,

satisfy the condition (17).

Therefore, the positive electrical circuit is asymptotically
stable and minimal-phase.

Note that the zero 510 is equal to the pole s, since the

matrix A is diagonal and after the cancelation of the zero
and pole the transfer function has the form

R 2R
+—|s+
RC, Lj RC,L

[sagrt)

In general case we have the following theorem.
Theorem 14. If A=diag[-a, -a, -a,]eM, and

by ' e !

c,]e RX" is zero, then

48)  T(®= [

at least one entry in the matrix B = [b1 b,

or in the matrix C = [C1 C,

at least one zero of the electrical circuit is equal to one of its
poles.
Proof. Let ¢, =0, then the transfer function of the electrical

circuit has the form

(49)

T(S):C[Ins_A]_lBI[Cl 0 C3 Cn]
by

i -1 b,

x[diag6+a; s+a, - s+ay))]| .

bn
1
:[Cl 0 C3 Cn]

(s+a,)(s+a,)...5+4a,)
xdiagf(s+a,)(S+8;)...6+a,) (S+a)(s+a3)..6+a,) ..

by
b,
o (S+q)(s+ay)...5+a,,)] :

by
_(s+a)[eb(s+a;)...5+a,)+CP,(S+a)(S+a;)...6+a, )]
- (s+a))(s+a,)...6+a,)

Gy (s+a3)...(6+a,) +Chs(s+a))(S+ay)...6+a, )
B (s+a)(5+a;)...5+a,) '

Therefore, the pole s, =-a, is also the zero of the

electrical circuit. The proof if one entry of the matrix B is
zero is similar. o

Theorem 14 can be easily extended to MIMO positive
asymptotically stable electrical circuits.

PRZEGLAD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 3/2016 187



Example 4. Consider the positive electrical circuit shown in
Figure 2 for n, =3, n, =4 with given positive resistances

R;, Ry, R;, R4, inductances L,, L,, capacitances C,,
C, and source voltages €,, €,, &, . In this case the state
equations have the form

u u
1 1 &
d|U; U,
(80a)  —| . A 7 |+Ble, |,
dt| i, i
€4
Iy I
where
A= diag| - LR Ry
RC, RsCs L, Ly
o -
RC,
e 0
(50b) B=| 373
1 1
— — 0
L, L,
L
| Ly Ly |
As the output of the electrical circuit we choose
U
. Us
(651  y=u3;+ig=C| 7|, C=[0 1 0 1].

I

Iy
The transfer matrix of the electrical circuit has the form
(52)
T(9)=ql,s—A'B=[0 1 0 1]

ool

RG,
1
— 0 0
8 F{3163 1 :
T LT [s+l st s+R215+P“J
2o RGA RGA LA L
20 =
L L Ly

X

_0 (s+1 3+RZI +R4j 0 (s+l s+L s+R2ﬂ
L RGA LA L RGA RGA L

RC
1
rc. 00 1 1 1
><R31C3 | :{ + 0 }
2 Lo | LRGs+l Lis+R, Lss+R,
L2 L2
1,0
L L Ly |
188

From (52) it follows that in this case three zeros of the
electrical circuit are equal to the corresponding poles.
Theorem 15. In SISO positive asymptotically stable

electrical circuits the distinct negative zeros SS, k=1..,n
and the distinct negative poles s;, j=1,...,n satisfy the

condition (17).

Proof. The proof follows from Theorem 3.1. By this theorem
there exists a minimal-phase realization (20) of (16) if and
only if the poles and zeros are distinct and negative and
satisfy the conditions (17). o

Theorem 15 can be easily extended to MIMO positive
asymptotically stable electrical circuits.

Theorem 16. In MIMO positive asymptotically stable
the distinct i?’k ,
and the distinct negative

electrical circuits negative zeros S

i=1..p, j=L.,m, kzl,...,nij

poles s, , k =1,...,n satisfy the conditions (24).

Concluding remarks

Minimal-phase positive electrical circuits has been
addressed. The minimal-phase realization problem for
positive electrical circuits has been analyzed. | has been
shown that the positive asymptotically stable electrical
circuits with distinct poles and zeros are minimal-phase and
satisfy the conditions (24) (Theorems 15 and 16). Sufficient
conditions for cancelation of zeros and poles of minimal-
phase electrical circuits have been established (Theorem
14). The considerations have been illustrated by examples
of positive minimal-phase electrical circuits. The presented
results can be extended to fractional order positive electrical
circuits.

This work was supported under work S/WE/1/16.
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