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Minimal–phase positive electrical circuits 
 
 

Abstract. Minimal-phase positive continuous-time linear electrical circuits are addressed. It is shown that positive asymptotically stable electrical 
circuits with distinct poles and zeros are minimal-phase systems. Conditions  are established for electrical circuits to be minimal-phase systems. 
Sufficient conditions for cancelation of zeros and poles of minimal-phase electrical circuits are proposed. 
 
Streszczenie. W pracy są analizowane dodatnie minimalnofazowe obwody elektryczne opisane równaniami stanu i macierzami transmitancji 
operatorowych. Wykazano, że dodatnie stabilne asymptotycznie obwody elektryczne z różnymi zerami i biegunami są obwodami 
minimalnofazowymi. Podano warunki minimalnofazowości obwodów elektrycznych, oraz warunki wystarczające upraszczania zer i biegunów w 
obwodach elektrycznych. Rozważania ogólne zilustrowano przykładami obwodów elektrycznych. (Dodatnie minimalnofazowe obwody 
elektryczne). 
 
Keywords: minimal-phase, positive, asymptotically stable, electrical circuit, pole, zero, cancelation. 
Słowa kluczowe: minimalnofazowość, dodatniość, stabilność asymptotyczna, obwody elektryczne, zera, bieguny. 
 
 

Introduction 
In electrical circuits the state variables and outputs take 

only non-negative values for any non-negative initial 
conditions and inputs. The positive standard and fractional 
order electrical circuits have been investigated in many 
papers and books [1-7]. A new class of normal electrical 
circuits has been introduced in [8]. The minimum energy 
control of electrical circuits has been investigated in [9]. 
Positive linear systems consisting of n subsystems with 
different fractional orders have been addressed in [10, 11]. 
Decoupling zeros of positive  linear systems have been 
introduced in [12]. 

Determination of the state space equations for given 
transfer matrices is a classical problem, called the 
realization problem, which has been addressed in many 
papers and books [13-17]. An overview of the positive 
realization problem is given in [13, 14, 16, 18]. The 
realization problem for positive continuous-time and 
discrete-time linear system has been considered in [16, 19-
27] and for linear systems with delays in [16, 19, 24, 27-29]. 
The realization problem for fractional linear systems has 
been analyzed in [16, 30-36] and for positive 2D hydrid 
linear systems in [29]. A new modified state variable 
diagram method for determination of positive realizations 
with reduced number of delays for given proper transfer 
matrices has been proposed in [37]. 

In this paper the minimal-phase realization problem and 
minimal-phase positive electrical circuits will be 
investigated. 

The paper is organized as follows. In section 2 some 
preliminaries on positivity and asymptotic stability of 
continuous-time linear systems are recalled. Some 
definitions, theorems and examples of positive electrical 
circuits are presented in section 3. Main results of the paper 
are given in sections 4 and 5. Minimal-phase realization 
problem of continuous-time linear systems is discussed in 
section 4 and minimal-phase positive electrical circuits are 
investigated in section 5. Concluding remarks are given in 
section 6. 

The following notation will be used:   - the set of real 

numbers, mn  - the set of mn  real matrices, mn
  - 

the set of mn  real matrices with nonnegative entries, 

)(smn  - the set of mn  rational matrices in s with real 

coefficients, nI - the nn  identity matrix.  
 

Preliminaries 
Consider the continuous-time linear system 

 

(1a) BuAxx  , 
(1b) DuCxy  ,                                     

where nx  , mu  , py   are the state, input and 

output vectors and nnA  , mnB  , npC  , 
mpD  . 

Definition 1. [18] The system (1) is called (internally) 

positive if ntxx  )(  and ptyy  )( , ],0[ t  for 

all nxx  )0(0  and  mtuu  )( , ],0[ t . 

Theorem 1. [18] The system (1) is positive if and only if 
 

(2)  nMA , mnB 
 , npC 

 , mpD 
 ,            

 

where nM  is the set of nn  Metzler matrices, i.e. the 

matrices with nonnegative off-diagonal entries. 
The transfer matrix of (1) is given by 
 

(3)  )(
)(

)(
][)( 1 s

sd

sN
DBAsICsT mp

n
  ,            

 

where )(sN  is the polynomial matrix and )(sd  is the 

polynomial. 
For single-input single-output (SISO, 1 pm ) linear 

system the transfer function can be written in the form 
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Definition 2. The roots 1s , 2s ,…, ns  of the equation 

(5)  
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are called the poles of the linear system. 

Definition 3. The roots 0
1s , 0

2s ,…, 0
ns  of the equation 
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n
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are called the zeros of the linear system. 

The poles 1s , 2s ,…, ns  and the zeros 0
1s , 0

2s ,…, 0
ns  are 

called distinct if ji ss   for ji   and 00
ji ss   for ji  , 

nji ,...,1,  , respectively. 
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Definition 4. The linear system is called minimal-phase if 
 

(7)  0Re ks  and 0Re 0 ks  for nk ,...,1 ,               
 

where Re denotes the real part of the complex number. 
Definition 5. [9] The positive system (1) is called 
asymptotically stable if 
 

(8)  0)(lim 


tx
t

 for all nx 0 .                     

 
Theorem 2. [18] The positive system (1) is asymptotically 
stable if and only if 
 

(9)  0Re k  for nk ,...,1 ,                          
 

where k  is the eigenvalue of the matrix nMA  and 
 

(10) ))...()((]det[ 21 nn AI   .         
 

Note that the set of poles { 1s , 2s ,…, ns } in general case is 

the subset of the set of eigenvalues { 1 , 2 ,…, n } [15]. 

Definition 6. The matrices A, B, C, D satisfying (2) are 
called a positive realization of a given transfer matrix )(sT  

if they fulfill the equality (3).  
 

Positive electrical circuits 
 Consider the linear continuous-time electrical circuit 
described by the state equations 
 

(11a) )()()( tButAxtx  ,                           

(11b) )()()( tDutCxty  ,                           
 

where ntx )( , mtu )( , pty )(  are the state, 

input and output vectors and nnA  , mnB  , 
npC  , mpD  . 

It is well-known [3] that any linear electrical circuit 
composed of resistors, coils, capacitors and voltage 
(current) sources can be described by the state equations 
(11). Usually as the state variables )(1 tx ,…, )(txn  (the 

components of the state vector )(tx ) the currents in the 

coils and voltages on the capacitors are chosen. 
Definition 7. [3] The electrical circuit (11) is called 

(internally) positive if ntx )(  and ptyy  )( , 

],0[ t  for any nxx  )0(0  and every mtu )( , 

],0[ t . 

Theorem 3. [3] The electrical circuit (11) is positive if and 
only if 

(12) nMA , mnB 
 , npC 

 , mpD 
 .         

 

Theorem 4. The linear electrical circuit composed of 
resistors, coils and voltage sources is positive for any 
values of the resistances, inductances and source voltages 
if the number of coils is less or equal to the number of its 
linearly independent meshes and the direction of the mesh 
currents are consistent with the directions of the mesh 
source voltages. 
Proof. Proof is given in [3]. 
Theorem 5. The linear electrical circuit composed of 
resistors, capacitors and voltage sources is not positive for 
all values of its resistances, capacitances and source 
voltages if each its branch contains resistor, capacitor and 
voltage source. 
Proof. Proof is given in [3]. 
Theorem 6. The electrical circuit shown in Figure 1 is 
positive for any values of the conductances kG , 

nk ,...,1,0 ; capacitances jC , nj ,...,1  and source 

voltage e. 
 

 
Fig. 1. Positive electrical circuit. 
 
Proof. Proof is given in [3]. 
Theorem 7. The R, L, C, e electrical circuits are not positive 
for any values of its resistances, inductances, capacitances 
and source voltages if at least one its branch contains coil 
and capacitor. 
Proof. Proof is given in [3]. 
Theorem 8. The linear electrical circuit of the structure 
shown in Figure 2 is positive for any values of its 
resistances kR , nk ,...,2,1 , inductances kL , 

2,...,4,2 nk   and capacitances kC , 1,...,3,1 nk  . 

Proof. Using Kirchhoff’s laws we can write the equations 
 

(13a) k
k

kk u
dt

du
CRe 0 , 1,...,3,1 nk  ,               

(13b) jj
j

jj iR
dt

di
Lee 0 , 2,...,4,2 nj  ,          

 

which can be written in the form 
,

 
 

 

 
 
Fig. 2. Positive electrical circuit. 
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Fig. 3. Positive electrical circuit. 
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and 
(14c) 
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From (14c) it follows that the electrical circuit is positive for 
any values of its resistances kR , nk ,...,2,1 , inductances 

kL , 2,...,4,2 nk   and capacitances kC , 1,...,3,1 nk  . □ 

Theorem 9. The linear electrical circuit of the structure 
shown in Figure 3 is positive for any values of its 

conductances kG , '
kG , kjG , njk ,...,1,  , capacitances 

kC , nk ,...,1  and source voltages ke , nk ,...,1 . 

Proof. Proof is given in [3]. 
The state equations for the positive electrical circuit shown 
in Figure 3 are given in [3]. 
Theorem 10. The positive electrical circuit G, C, is type is 
unstable if it has at least one node with branches containing 
only capacitors and current sources. 
Proof. Proof is given in [3]. 
Theorem 11. The positive electrical circuit R, L, C, e type is 
unstable if it has at least one mesh containing only the 
inductances and source voltages. 
Proof. Proof is given in [3]. 
 

Positive minimal-phase realizations of continuous-time 
linear systems 

First let us consider the SISO continuous-time linear 
system with the transfer function (4). From (4) we have 

 

(16) n
s

bsTD 


)(lim                               
 

and the strictly proper transfer function has the form 
 

(17a) 

)(

)(ˆ

...

ˆˆ...ˆ
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,           

where 

(17b) knkk abbb ˆ , 1,...,1,0  nk ,  

(17c) 01
1

1
ˆˆ...ˆ)(ˆ bsbsbsn n

n  
 .                  

 
It is assumed that the poles 1s , 2s ,…, ns  and the zeros 

0
1s , 0

2s ,…, 0
1ns  of (17) are distinct, real, negative and 

satisfy the conditions 
 

(18) 1
0

 kkk sss  for 1,...,1  nk .                

 
It is well-known [16] that the strictly proper transfer function 
(17) can be written in the form 
 

(19a) 
 


n

k k

k
sp ss

T
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where 
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k
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Note that 0kT  for nk ,...,1  if and only if the poles and 

zeros are distinct and satisfy the condition (18). In this case 
we can choose 0kc , 0kb  so that 
 

(20) kkk bcT  , nk ,...,1                           
 

and the matrices 

nn MsssA  ]diag[ 21  , 12

1
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(21) n
ncccC 

 1
21 ][                        

 

are a positive realization of the transfer function (17). 
Theorem 12. There exists minimal-phase realization (21), 
(16) of the transfer function (4) if and only if the poles and 
zeros of (17) are distinct, real, negative and the conditions 
(18) are satisfied. 
The proof and procedure for computation of the realization 
are given in [38]. 
 Now let us consider the m-inputs and p-outputs (MIMO) 
continuous-time linear system with the strictly proper 
transfer matrix 
 

(22a) )(
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 ,                 
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with distinct real negative poles 1s , 2s ,…, ns  and distinct 

real negative zeros 1,0
11s ,…, 11,0

11
ns , 1,0

1ms ,…, pmn
pms
,0

. 

The transfer matrix (22) can be written in the form 
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where 
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and 
 

(24) ),min(rank pmrT kk  .                      
 

It is easy to check that if the conditions 
 

(25) 1
,0
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k

ijk sss  for pi ,...,1 , mj ,...,1 , ijnk ,...,1     
 

are satisfied then mp
kT 

  for nk ,...,1  and it can be 

written as the product 
 

(26a) kkk BCT  ,                                  
 

where 
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It can be shown that the matrices 
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are a positive realization of the matrix (22). 

Theorem 13. There exists a minimal-phase realization (27) 
of the strictly proper transfer matrix (22) if and only if the 
poles and zeros are distinct, real, negative and the 
conditions (24) are satisfied. 
 
Minimal-phase positive electrical circuits 
 First we shall show the essence of the approach on 
simple examples of positive electrical circuits. 
Example 1. Consider the positive electrical circuit shown in 
Figure 4 with positive resistances 1R , 2R , 3R , 

capacitances 1C , 2C  and source voltage e. As the state 

variables we choose the voltages 1u , 2u  on the capacitors 

and as the output y their sum. 

 
Fig. 4. Positive electrical circuit of Example 1. 
 
Using Kirchhoff’s laws we may write the equations 
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The equations (28) and (29) can be rewritten in the form 
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The transfer function of the electrical circuit has the form 
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(31a) 
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.11)]()([

])([)(
2

322311

2
3232121
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

bsassRRCRRC

sRRRRRCCsd
  

 

The poles of the electrical circuit are 
 

(32) 
a

abb
s

2

42

1


 , 
a
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s

2

42

2


            

 

and its zero is 
 

(33) 
2211

0
1

2

RCRC
s


 .                              

 

It is easy to see that the poles (32) and zero (33) satisfy the 
condition (17) for any positive resistances 1R , 2R , 3R  and 

capacitances 1C , 2C  since always 042  ab . 

Example 2. Consider the positive electrical circuit shown in 
Figure 5 with positive resistances 1R , 2R , 3R , inductances 

1L , 2L  and source voltages 1e , 2e . As the state variables 

we choose the currents 1i , 2i  in the coils and as the output 

y the voltages on the resistances 1R , 2R . 
 

 
Fig. 5. Positive electrical circuit of Example 2. 

 
Using Kirchhoff’s laws we may write the equations 
 

(34a) )( 213
1

1111 iiR
dt

di
LiRe  ,                

(34b) )( 123
2

2222 iiR
dt

di
LiRe                   

and 
 

(35) 









22

11

iR

iR
y .                                   

 

The equations (34) and (35) can be rewritten in the form 
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
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d
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(36b) 







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i

i
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where 
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
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
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L
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(36c) 









2

1

0

0

R

R
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The transfer matrix of the electrical circuit has the form 
 

(37a) 

,
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0
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where 
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The poles of the electrical circuit are 
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a
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2
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1
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2
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and its zeros are 
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2
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1
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L
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s
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 , 

1
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2
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L
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It is easy to see that the poles (38) and zeros (39) satisfy 
the condition (17) for any positive resistances 1R , 2R , 3R  

and inductances 1L , 2L  since always 042  acb . 

Example 3. Consider the positive electrical circuit shown in 
Figure 6 with given positive resistances 1R , 2R , R , 

inductance L , capacitances 1C , 2C  and source voltage 

e . 

 
Fig. 6. Positive electrical circuit of Example 3. 
 
Using Kirchhoff’s laws we may write the equations 
 

(40a) 1
1

11 u
dt

du
CRe  ,                              

(40b) 
dt

di
LRie  ,                                    

(40c) 2
2

22 u
dt

du
CRe  ,                             
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which can be written in the form 
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As the output y we choose 
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The transfer function of the electrical circuit has the form 
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where 
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The poles of the electrical circuit are 
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and its zeros are 
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R
s  .                       

If 2211 CRCR   and 
22

1

CRL

R
 , then the poles and zeros 

satisfy the condition (17). 
Therefore, the positive electrical circuit is asymptotically 
stable and minimal-phase.  

Note that the zero 0
1s  is equal to the pole 2s  since the 

matrix A is diagonal and after the cancelation of the zero 
and pole the transfer function has the form 
 

(48) 
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In general case we have the following theorem. 
Theorem 14. If nn MaaaA  ]diag[ 21   and 

at least one entry in the matrix   nT
nbbbB  21  

or in the matrix   n
ncccC 

 1
21   is zero, then 

at least one zero of the electrical circuit is equal to one of its 
poles. 
Proof. Let 02 c , then the transfer function of the electrical 

circuit has the form 
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Therefore, the pole 22 as   is also the zero of the 

electrical circuit. The proof if one entry of the matrix B is 
zero is similar. □ 
Theorem 14 can be easily extended to MIMO positive 
asymptotically stable electrical circuits. 
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Example 4. Consider the positive electrical circuit shown in 
Figure 2 for 31 n , 42 n  with given positive resistances 

1R , 2R , 3R , 4R , inductances 2L , 4L , capacitances 1C , 

3C  and source voltages 0e , 2e , 4e . In this case the state 

equations have the form 
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As the output of the electrical circuit we choose 
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The transfer matrix of the electrical circuit has the form 
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From (52) it follows that in this case three zeros of the 
electrical circuit are equal to the corresponding poles. 
Theorem 15. In SISO positive asymptotically stable 

electrical circuits the distinct negative zeros 0
ks , nk ,...,1  

and the distinct negative poles js , nj ,...,1  satisfy the 

condition (17). 
Proof. The proof follows from Theorem 3.1. By this theorem 
there exists a minimal-phase realization (20) of (16) if and 
only if the poles and zeros are distinct and negative and 
satisfy the conditions (17). □ 
Theorem 15 can be easily extended to MIMO positive 
asymptotically stable electrical circuits. 
Theorem 16. In MIMO positive asymptotically stable 

electrical circuits the distinct negative zeros k
ijs ,0 , 

pi ,...,1 , mj ,...,1 , ijnk ,...,1  and the distinct negative 

poles ks , nk ,...,1  satisfy the conditions (24). 

 
Concluding remarks 

Minimal-phase positive electrical circuits has been 
addressed. The minimal-phase realization problem for 
positive electrical circuits has been analyzed. I has been 
shown that the positive asymptotically stable electrical 
circuits with distinct poles and zeros are minimal-phase and 
satisfy the conditions (24) (Theorems 15 and 16). Sufficient 
conditions for cancelation of zeros and poles of minimal-
phase electrical circuits have been established (Theorem 
14). The considerations have been illustrated by examples 
of positive  minimal-phase electrical circuits. The presented 
results can be extended to fractional order positive electrical 
circuits. 
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