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The T-polynomial approach for LQG control applied 
 to a Switched Reluctance Motor (SRM) 

 
 

Abstract. This paper proposes a tuning procedure that combines the well known T-polynomial, from predictive control, with the LQG algorithm. The 
proposed scheme was successfully applied to a speed loop of a switched reluctance motor (SRM), which is known by its specific issues related to 
driving and control. Such characteristics make the SRM a strong set up to exploit the proposed solution. Results are compared with both the 
predictive controller approach GPCBC and the classical LQG/LTR, analysed regarding the transient and disturbance rejection. Power analysis of the 
control signal shows a power efficiency improvement favourable for the proposed approach. 
 
Streszczenie. Opisano sposób sterowania silnikiem reluktancyjnym wykorzystująca metodę T-wielomianu z algorytmem LQG – linear quadratic 
Gaussian.   Metodę porównano z innymi metodami jak GPCBC I LQG/LTR pod kątem tłumienia zakłóceń i stanów chwilowych. T-wielomianowa 
metoda sterowania przełączalnym silnikiem reluktancyjnym 
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Introduction 

It is well know that due to its constructive simplicity, 
inherent robustness, high torque density and potential for 
low-cost large scale production, switched reluctance motors 
(SRM) are now a modern alternative regarding 
electromechanical conversion on a variable speed solution 
[1,2]. For high performance applications, the SRM usually 
operates under magnetic saturation condition [3]. Such 
characteristics leads the motor into a strongly nonlinear 
behaviour [4], with several challenges to both constructive 
and control investigation, e. g. torque ripple minimization, 
wide range speed operation adjustment, fault tolerant drive 
control and acoustic noise reduction. 

For low speed condition, current set-point tracking is 
mandatory for a proper speed and/or torque control [5]. 
However, at high speed operation, current control is 
constrained because driving circuit phases are switched on 
during a time window smaller than that of the rising time. As 
a consequence, current of the SRM may not reach the 
desired reference and current control is reduced for a single 
pulse command. Therefore, it is imperative one to consider 
robustness for the speed controller design in order to deal 
with both low and high speed operation, as well as it should 
guarantee disturbance rejection. Such requirements make 
speed control design a challenging task [6]. 

In order to accommodate such issues and provide 
feasible solutions to embedded real-time control, several 
approaches using intelligent controllers have been 
proposed. Many of these algorithms apply Optimized 
Search Algorithms, Fuzzy logic and Neural Networks [7, 8, 
9]. However, predictive and robust controllers have more 
recently justified their application for this type of problem [5, 
10], as them allow an analytical solution for disturbance 
rejection, transient response. 

Within this context, this paper presents studies based on 
predictive and optimal control perspectives for speed 
control loop of a SRM. Under predictive control framework a 
control technique, based on the Generalized Predictive 
Control (GPC), named GPCBC [5], has been recently and 
successfully applied for the SRM's current loop. Such 
algorithm is extended herein for the speed control loop. The 
optimal control perspective considers the traditional Loop 
Transfer Recovery (LTR) technique, applicable for the 
Linear Quadratic Gaussian (LQG) control [11]. In this work 

LQG/LTR is implemented for discrete-time, for comparison 
purposes with the proposed LQG algorithm based on the so 
called T-polynomial, commonly applied for GPC to improve 
robustness. Simulations were performed in order to show 
the effectiveness of the proposed control method regarding 
to both high noise frequency and step-like disturbances 
rejection. Additionally, power analysis of the control signal 
was considered for efficiency aspects investigation 
purposes. 

Controllers that reached best simulation results were 
then implemented in a 6/4 SRM experimental setup (see 
Table 9 at the appendix for motor’s details) in order to 
experimentally validate the results. 

This paper is divided as follows. Next section presents 
description and identification of the speed model of the 
SRM. Middle section describes the LQG controller with T-
polynomial proposed in this work. Last sections show 
simulations and experimental results followed by the 
conclusions of the paper. 

 
Modelling and Identification of speed loop 

Speed model of SRMs closely relates electromagnetic 
and mechanical variables. For the particular case of speed 
control, the block diagram shown in Fig. 1 is commonly 
reported [3]. 
 
 
 
 
 
 
Fig. 1. Simplified block diagram of the Switched Reluctance Motor. 
 

Transfer function G(s) in Fig. 1, at the inner loop, raises 
from the electric and magnetic characteristics of the motor. 
If current control loop is able to successfully track current 
reference, from low speed to single pulse operation at 
higher speeds, then the overall Gmf(s) may be modelled as a 
first order system such as: 
 

(1)  
Ks

K
sGmf 
)( . 
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Mechanical part of the SRM relates moment of inertia J and 
viscous coefficient B, which is also a first order model given 
by: 

(2)   
BJs

sGmec 


1
)( . 

Therefore, the system to be controlled is a second order 
type, as follows: 

(3)   
BJsKs

K
sGSRM 


1
)( . 

Current output i(t) and mechanical conjugate Tm are 
related to each other through the gain relationship KT shown 
in Fig. 1, given by [3]: 

(4)   
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dL
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where 



d

dL )(
 is a constant, named inductance variation 

gradient, commonly referred to as κ [3]. 
 Therefore, by applying equation (4) into equation (3), the 
model of the SRM may be written as: 
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This is a typical second order model whose parameters a, b 
and Kv may be obtained by a grey box identification method. 
In this work, it has been applied an identification based on 
non linear optimization with constraints, to obtain the 
discrete-time model, considering the sampling period Ts=0.1 
s and a zero-order holder, given by  
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Equation (6) has one pole closer to the unit circle and 
one fast pole placed at zero. Such pole placement clearly 
distinguishes the slow dynamics, due to mechanic part of 
the model (z=0.9048), and the fast dynamics, due to 
electromagnetic part of the model (z=0). Thus, as the 
independent term of the numerator in equation (6) is nearly 
zero, it is suitable to consider the first order model: 

(7)   
9048.0

3032.0
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
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z
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LQG with T-polynomial 
 Consider a linear discrete-time system given by the 
CARIMA (Controller Auto-Regressive Integrative Moving 
Average) model: 

(8) ,
)(

)()1()()()( 111


  kw

zCkuzBkyzA  

where Δ=1-z-1, y(k) and u(k) stand for the system's output 
and input respectively. The additive disturbance w(k) is a 
white gaussian noise and polynomials A(z-1), B(z-1) and C(z-1) 
describe the model dynamics, given by: 
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where nc = n > m. However, to identify the polynomial  

C(z −1), that describes disturbance dynamics, is not always 

an easy task [12]. Therefore, C(z −1) is often replaced by 
the so called T-polynomial, which is tuned to improve 
controller’s robustness and may be given by 

(9)     npol zzT 11 1)(     

where α is the zero of the polynomial, acting as a tuning 
parameter. Details for a proper setting may be found in [12, 
13]. 
 On the other hand, robustness in the optimal control 
research is taken with a different perspective, where the 
LQG/LTR in the remarkable work reported by Doyle [11] 
plays a key role. Although it became a popular technique, 
recovery is guaranteed for minimal phase systems at 
continuous time, with additional conditions for discrete-time 
reported by [14]. 
 So that, robustness under predictive and optimal control 
perspectives seems do not regard a closer relationship. 
However, Park et al. [15] have shown that a GPC with T-
polynomial may be written as a Receding Horizon Controller 
(RHC) and a Kalman Filter.  
 In order to obtain a state space representation in terms 
of u(k) instead of Δu(k), in this work we take the T-
polynomial in equation (9) as the multiplicative term of w(k), 
replacing C(z-1)/Δ in equation (8), as integral action is taken 
by the state augmentation.  
 Then, the model takes the state space representation 
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where the system matrices are given by 
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If an output disturbance v(k) is also considered at the 
output of the state space model, then equations (10) and 
(11) may be written in the more general representation: 
 

(12)  );()()()1( kwkukk EBAxx   

(13)  );()()()( kvkwkky  FCx  
 

where w(k) and v(k) are gaussian, uncorrelated processes 
with zero mean (E{w(k)}=0, E{v(k)}=0) and covariance 
matrices given by E{w(k)wT(k)} = Rw, E{v(k)vT(k)} = Rv and 
E{w(k)vT(k)} = 0. In a case where F=1 and v(k)=0, then 
equation (13) becomes Eq. (11). 
 Note that the total output disturbance in equation (13) is 
ξy(k) = Fw(k) + v(k) , and state disturbance in equation (12) 
is ξx(k) = Ew(k) , which are clearly correlated signals. Hence, 
the Kalman gain expression has to be considered for such 
condition (see for instance [16]). So that one can find the 
Kalman gain expression: 

(14)   ×  +  = TT FEAPCK
df wR  

      ,  +  + 
1TT 

FFCPC wv RR  

where P is the unique solution of the Riccati equation: 

 ×  +  -  +  = TTTT FEAPCEEAPAP ww RR  
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Kalman gain given by equation (14) is applied to obtain the 
optimal state observer: 
 

(15)  ,)(ˆ)()()(ˆ)1(ˆ kykykukk 
dfKBxAx  

 

where )(ˆ)(ˆ kky xC . In order to complete the LQG control, 

state estimation )(ˆ kx is fed back through the optimal gain 

Kr obtained from the Linear Quadratic Regulator (LQR) 
problem, given by: 
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Where S is the unique solution of the Riccati equation: 
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and Q and R are weighting matrices associated with the 
state and control. In order to include integral action (see 
[17] and [18] for details), it might be considered the 
augmented state xa(k) = [x(k) xi(k)]T, where x(k) is the state 
of the system and xi(k) is the state related with integral 
action. In this case, matrices A′ and B′ are 
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 The classical LQG/LTR technique considers that 
disturbance is added at the input of the system. So that, 
covariance matrix is given by Rw = q2BBT , which represents 
a fictitious noise intensity, with q ∈ Re and q > 0 being a 
scalar. However, in this work it is considered that such 
noise intensity is weighted by E matrix in equation (12), 
leading to Rw = EET. 
 Robustness is improved for the LTR procedure as q→∞  
[11]. For the controller proposed in this work, robustness is 
modified by the pole placement of the T-polynomial, which 
affects matrix E, so that, tuning parameter α in equation (9) 
plays a fundamental role. 
 It is important to highlight that the choice of α is different 
for the GPC-T and for the LQG with T-polynomial (named 
here LQG-T to simplify writings). Under predictive control 
framework, T-polynomial is a low-pass filter and directly 
affects disturbance-to-output transfer function. On the other 
hand, for the LQG-T, T(z-1) is a tuning parameter as a whole 
which modifies the Kalman gain Kfd and consequently, the 
poles of the observer. In other words, α is a tuning 
parameter that indirectly affects robustness, in contrary with 
GPC. Therefore, pole placement for T-polynomial is 
different for GPC and LQG-T control, as it becomes clear in 
the next section through simulations for the SRM. 
Additionally, an experimental result is presented in order to 
validate the proposed controller for an embedded 
application. 
 
Simulation Results 
 In this section, simulations of GPCBC, LQG-T and 
LQG/LTR controllers were performed. The GPCBC 
controller’s robustness is formulated with basis on the T-
polynomial, which makes it suitable for comparative results 
with LQG-T. The GPCBC algorithm results in a RST 
structure whose polynomials are given by [5]: 
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where b0 is the numerator of the discrete-time transfer 
function of the plant and αg is a tuning parameter which 
varies from 0 to 1. The T-polynomial, also referred to as T-
filter, is described by C(z−1) = 1+c

1
z−1+c

2
z−2, in order to avoid 

confusing notation with T(z−1) defined above for the RST 
structure. So that, it is preferred to call C(z−1) as a filter that 
improves robustness, which is given by 
 

       111 11)(   zezezC jj  ,  
 

where  and  and are tuning parameters which define 
complex conjugate roots at continuous time: sr =  ± j. The 
main idea consists in choose an absolute value for sr and 
vary the angle of sr, which makes  and  to vary for each 
desired angle. 
 In the previous work Torrico et. al. [5] have shown that 
the choice  =  (45° for sr) reaches an acceptable trade-off 
between disturbance rejection and noise attenuation, as 
well as it also speeds up step disturbance signals for the 
current control loop. In this work the same GPCBC is 
applied to control the speed loop, which is about 1000 times 
slower than the current loop. As a consequence, tuning 
parameters had to be modified to  = 0.1 and g = 0.905, in 
order to guarantee both good performance regarding to the 
disturbance rejection and noise attenuation. Such choice 
place the poles of C(z−1) at z = 0.9048 and z = 0.9048e±j0.1 for 
0° and 45°, respectively, in s-plane. Therefore,  
  211

0 81871.08096.11)(   zzzC  

and 

  .81871.08006.11)( 211
45

  zzzC  

It is worthy to note that the poles of C45(z
−1) are just about 

5.7° in the z-plane. 
 The pole placement of the poles of the filter C(z−1) has 
direct influence on the disturbance rejection. On the other 
hand, pole placement in the LQG-T algorithm have an 
indirect influence, as T-polynomial plays the role of a tuning 
parameter which modifies the Kalman gain in the Kalman 
filter. Therefore, one might not expect the poles of C(z−1) 
and TLQG-T(z−1) to be equal. In this work, although the 
absolute value is the same for the poles of both algorithms, 
the angles are different. So that, LQG-T has been tuned to 
place the poles of TLQG-T(z−1) at z = 0.9048 and z = 
0.9048e±j0.6981, whose angle is about 40° in the z plane, to 
obtain 

  211 82.081.11)(
0


  zzzT TLQG   

and 

  .82.039.11)( 211

40


  zzzT TLQG  

 The robustness analysis criteria consider the upper 
bound ߜ௣തതത multiplicative error of 10% gain uncertainty and 
two samples of variation in time delay, as performed in [15]. 
Fig. 2 shows that GPCBC45° and LQG-T40° present almost 
the same robustness behaviour up to 11 rad/s. For 
frequencies higher than that Ir(j) graphs for both 
controllers separate each other. Particularly, ߜ௣തതത is closer to 
be violated for frequencies between 8 rad/s and 11 rad/s, 
where GPCBC45° and LQG-T40° are equivalent. 
 All the simulations of this section consider a 10 s of total 
time with a step input disturbance din = 300 applied at t = 3 s 
and white noise with power 1 applied in t = 5 s. Additionally, 
a 40 Hz sinusoidal disturbance signal was added for the 
total simulation time, in order to reproduce a real 
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disturbance signal noticed in the real case, maybe due to 
electromechanical intrinsic characteristic of the SRM. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Robustness analysis for 10% gain uncertainty and two 
samples of time delay uncertainty. 
 
Comparison between GPCBC(0o) and GPCBC(45o) 
 A preliminary comparison study is presented for GPCBC 
by considering two different cases: C0(z

−1) and C45(z
−1). Note 

that Fig. 3 shows clearly that the GPCBC45° significantly 
speeds up disturbance rejection compared to GPCBC0°, as 
can be seen by the detail at 3 s. A quantitative analysis of 
this behaviour is given in Table 1, by the performance 
indices [19]: Integrated Absolute Error (IAE) and Total 
Variation (TV) for set-point reference tracking (SR) and load 
disturbance rejection (LDR). By looking at the IAE-LDR 
index one can notice the smaller value for the 45° case, 
which indicates its improvement regarding step-like 
disturbance rejection. On the other hand, the smaller TV 
indices for the GPCBC0° case indicate its better 
performance regarding the control signal for both the 
transient operation (see TV-SR indices and current graphs 
in Fig. 1 for 0 < t < 2 s) and disturbance rejection (see TV-
LDR indices and current graphs in Fig. 1 for 3 < t < 5 s). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Simulation step response (GPCBC angle 0° and GPCBC 
angle 45°). 
 
Table 1. Performance indices: experimental results 

Controller 
IAE TV 

SR LDR SR LDR 
GPCBC∠0o 382.90 34.61 1806.98 1432.62 

GPCBC∠45o 328.04 23.34 2161.94 1851.86 
 

 Performance indices aforementioned are a consistent 
tool usually applied to concisely report the controller’s 
performance regarding set-point tracking and disturbance 
rejection. However, output variations, such as low and high 

frequency noise, may reflect in control actions. In this case, 
variance (VAR) has been usually applied as an index to 
quantify the long-term behaviour with a single value, and 
could be used as a power signal indicator. 
 Regarding to power analysis, the power spectral density 
(PSD) is a frequency portrait of a signal that contains 
information related to its power. By integrating the PSD 
graph over a frequency range one gets the total power of 
the signal under analysis (see [20] for more details about 
PSD). 
 In the case of control systems, PSD applied to the 
control signal offer a graphic view of its power. In addition, 
total power computed is a concise measure of efficiency 
that complements the VAR index. 
 For the simulations and experimental results carried out, 
a spectral analysis of the control signal was performed. For 
such purpose, it has been considered u(t) for t ≥ 5 s (when 
the white noise has been added). The DC level has been 
taken out by subtracting the average level of the control 
signal in the mentioned time interval, producing the signal.
  

(20)  ,)()(0 ukuku   
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


M

j

ju
M

u
0

)(
1  and M is the total number of 

samples of the signal u(k) over the time interval (t ≥ 5 s in 
this particular case). 
 However, u0(k) is a discrete-time signal and PSD is 
estimated for a continuous range of frequencies. So that is 
necessary to take into account the relationship

s

Tj

T
ez s

  0, , where Ts is the sampling time, i.e. , 

PSD can be estimated for u0(k) over 

sT

 0 . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Frequencies related to u0(t) (t ≥ 5) for the current control 
signals in Fig. 3. 
  
 PSD graphs for GPCBC controllers are shown in Fig. 4. 
Although GPCBC45° shows a better performance regarding 
to load disturbance rejection, GPCBC0° clearly presents 
power peaks lower than the 45° case in almost all 
frequencies. 
 The total power column in Table 2 are in accordance 
with the initial analysis of the PSD peaks mentioned earlier 
for the 0◦ case, which are in accordance with the computed 
variance (see column VAR), and indicates a better 
performance for steady-state. Note that results in Table 2 
are regarding to the steady state analysis (5 < t < 10 s), and 
keep no relationship with results in Table 1. Same applies 
to the related tables in next sections.  
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 Besides, the main purpose of the GPCBC45° is to 
accelerate disturbance rejection, which is commonly a 
desirable behaviour, especially for electric motor operation 
purposes, like this case study. 
 

Table 2. Power Analysis: experimental results 
Controller Total Power VAR 

GPCBC∠0o 54.66 196.18 
GPCBC∠45o 100.65 373.69 

 

Comparison between LQG/LTR and LQG-T(40o) 
 In the following, the proposed LQG-T controller is 
compared with the traditional LQG/LTR implemented in 
discrete-time. The LQG/LTR has been tuned with q = 100 in 
order to achieve disturbance rejection as fast as the one 
obtained for the GPCBC-45°. Both controllers were set with 
R = 20 and Q = Ca

TCa, where Ca = [C I], in order to 
guarantee the same reference tracking behaviour. 
 In Fig. 5 it is noticed that disturbance rejection is very 
similar for both controllers, as detailed at t = 3 s. On the 
other hand, control signal graphs clearly show that the 
behaviour of the LQG-T controller is smoother than that of 
the LQG/LTR (see detail at t = 5.5 s). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Simulation step response (LQG/LTR - q=100 and LQG-T 
angle 40°). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Frequencies related to u0(t) (t ≥ 5) for the current control 
signals in Fig. 5. 
 

 In Fig. 6 it can be seen that frequency peaks of the 
LQG-T controller are almost equal the ones of the LQG/LTR 
for lower frequencies, but are strongly reduced for higher 
frequencies. Special attention must be paid for the strongly 
increment of power at 40 Hz for the LQG/LTR, while LQG-T 
keeps it at the same level of the low frequency ones. 
 Step response in Fig. 5 is quantified by the indices 
shown in Table 3, where IAE indices regarding to the output 
(speed) indicate a similar behaviour of both controllers for 

the transient (IAE-SR) and disturbance rejection (IAE-LDR).  
However, TV-LDR and TV-SR indices of the LQG-T are 
respectively about a quarter and a half of that of the 
LQG/LTR, which clearly indicates that the LQG-T control 
signal exhibits smaller variation than the LQG/LTR one. 
This is a desired behaviour as smoothness in control signal 
has direct influence on actuators operation. 
 Table 4 quantify the spectral behaviour by showing that 
the total power of of the LQG-T controller is about a fifth of 
that of the LQG/LTR one. Total variance is also favourable 
for the LQG-T controller which is in accordance with the 
total power values. 
 

Table 3. Performance indices: experimental results 

Controller 
IAE TV 

SR LDR SR LDR 
LQG/LTR (q=100) 344.81 26.36 8817.47 8256.77 

LQG-T∠40o 328.48 28.33 3794.11 1917.57 
 

Table 4. Power Analysis: experimental results 
Controller Total Power VAR 

LQG/LTR (q=100) 522.88 1743.03 
LQG-T∠40o 95.27 324.14 

 

Comparison between LQG-T(40o) and GPCBC(45o) 
 In order to complete the analysis, the proposed LQG-T, 
tuned as in the previous section, is compared with the 
GPCBC45°, tuned as in the previous comparison with 
GPCBC0°. The aim of this comparative study is to determine 
which controller reaches the better trade-off between 
disturbance rejection indices and steady state behaviour. 
 Step response in Fig. 7 shows that the step-like 
disturbance rejection is slightly improved for GPCBC45°, with 
similar set-point reference for both controllers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Simulation step response (GPCBC angle 45° and LQG-T 
angle 40°). 
 

 On the other hand, Fig. 8 shows that the LQG-T 
controller exhibits lower peaks of the PSD at the majority of 
the lower frequencies and roughly the same peak of the 
GPCBC controller at the undesirable 40 Hz disturbance 
signal.  
 Step response behaviour is quantified in Table 5, which 
shows the similar behaviour of the compared controllers 
regarding to the set-point reference track (see IAE-SR index 
column), although TV-SR column indicates an advantage of 
the GPCBC over LQG-T as it exhibits a smoother control 
signal (see current graphs in Fig. 7 for 0 < t < 2 s). In 
addition, TV-LDR index shows just a slightly better 
performance of GPCBC controller, nevertheless, a very 
small variation of the weight R for the LQG-T could lead to a 
different result, so that, it can be considered that both 
controllers exhibit similar behaviour regarding to 
disturbance rejection (see current graphs in Fig. 7 for 3 < t 
< 5 s). 
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Fig. 8. Frequencies related to u0(t) (t ≥ 5) for the current control 
signal in Fig. 7. 
 

 On the other hand, the power analysis in Table 6 shows 
that the LQG-T controller presents a more efficient result 
regarding the total power, despite of the close values. 
  

Table 5. Performance indices: experimental results 

Controller 
IAE TV 

SR LDR SR LDR 
GPCBC∠45o 328.04 23.34 2161.94 1851.86 
LQG-T∠40o 328.48 28.33 3794.11 1917.57 

 

Table 6. Power Analysis: experimental results 
Controller Total Power VAR 

GPCBC∠45o 100.65 373.69 
LQG-T∠40o 95.27 342.14 

 

Experimental Results 
 This section provides an experimental application of the 
proposed controller, aiming both to show the effectiveness 
of the proposed control method and validate the 
GPCBC/LQG-T simulation comparison of the previous 
section. Thus, controllers were adjusted exactly as in the 
simulation. 
 The bench is assembled by a 6/4 SRM, switched by a 
three-phase power converter which is fed by a 120 V voltage 
controlled source, as shown in Fig. 9. Driving circuit is 
controlled through a TI TMS320F28335 DSP, which 
contains the controller’s codes considered in this work. Both 
the motor and the converter were designed at the 
Department of Electrical Engineering of the Universidade 
Federal do Ceará. The SRM is coupled to a generator 
cascaded with a rheostat, which plays the resistive load 
role. By varying the resistance one also varies the 
generator torque which reflects as a load torque 
disturbance for the reluctance motor. Therefore, it is 
considered a 20 W resistive load in order to get a suitable 
torque for the motor's speed. However, the rheostat is 
manually added to the generator, which makes difficult to 
add disturbances at exactly t = 3 s. 
 Step response shown in Fig. 10 exhibits the output 
behaviour very similar of that obtained in the simulation for 
both set-point reference tracking and load disturbance 
rejection. Besides output and control signal graphs are 
apparently similar, in this case the IAE and TV indices 
become a more precise way to investigate the controllers' 
performance. Therefore, set-point reference, given by the 
IAE-SR and TV-SR indices shown in Table 7, exhibits an 
advantage for the LQG-T compared to the GPCBC. The 
load disturbance rejection indices are about a half of these 
observed from the simulation results in Table 5 and might 
be considered as equivalent to each other for this 
experimental test. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9. Experimental bench set up. 1 - power converter (switching 
circuit). 2 - 6/4 Switched Reluctance Motor. 
 

 As performed for simulations, spectral analysis has also 
been taken for the experimental test considering u0(t) for 
t≥5s. Results can be seen in Fig. 11 where PSD peaks are 
smaller at lower frequencies for the LQG-T, although the 40 
Hz disturbance signal has almost the same peak value for 
both controllers. Nevertheless, the total power for the LQG-
T controller is about a half of the GPCBC one, as presented 
in Table 8. The analysis may be complemented by the VAR 
column whose values for the comparative controllers follow 
the total power tendency. This restates the efficiency 
improvement of the proposed controller. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10. Step response: experimental results. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11. Frequencies related to u0(t) (t ≥ 5) for the current control 
signal in Fig. 10: experimental results. 
 
Table 7. Performance indices: experimental results 

Controller 
IAE TV 

SR LDR SR LDR 
GPCBC∠45o 321.51 10.60 4397.00 923.00 
LQG-T∠40o 258.17 13.50 4292.00 1008.00 
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Table 8. Power Analysis: experimental results 
Controller Total Power VAR 

GPCBC∠45o 8.84 23.91 
LQG-T∠40o 4.60 16.06 

 
Conclusion 

This paper proposed a control tuning method applicable 
for LQG applied for a switched reluctance motor. The 
technique incorporates the so called T-polynomial, popular 
in the predictive control community, into the optimization 
problem of the Kalman filter, which results in the controller 
named herein as LQG-T. Simulations indicate that the 
proposed control method and the LQG/LTR controller 
exhibit similar results regarding to the speed control. 
Nevertheless, LQG-T improves the operation of the current 
actuators as its control signal is less oscillatory than that of 
the LQG/LTR. In addition, comparison results between 
LQG-T and GPCBC suggest that both controllers are 
equivalent with respect to the transient response (set-point 
reference tracking) and disturbance rejection. However, 
steady state analysis, which is investigated through power 
analysis of the control signal, indicates a slightly 
improvement favourable for the LQG-T compared with 
GPCBC. Experimental results for a 6/4 SRM workbench 
shows that indeed the transient response and disturbance 
rejection are similar for both controllers, while the power 
analysis at the steady state shows a better performance for 
the LQG-T over GPCBC, as it highlights the reduction of the 
total power computed. In the light of the promising results, a 
long term experiment is advised in order to validate the 
improvement on power efficiency of the control solution. 
 
APPENDIX 
Table 9. Main characteristics of the 6/4 SRM 

Characteristic Values 
Number of phases 3 
Nominal current (A) 10 
Nominal Voltage (V) 120 
Nominal speed (rpm) 1500 
Stator resistance (Ω) 0.48 

Maximum inductance (mH) 8 
Minimum inductance (mH) 12 

Poles per phase at the stator 2 
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