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Streszczenie. Zaprezentowano metode pomiaru sygnatdw okresowych wykorzystujgcg podprébkowanie 2. Przedstawiono algorytm przetwarzania
sygnatéw, umozliwiajgcy redukcje btedéw pomiarowych, spowodowanych przez wahania czestotliwosci prébkowania i mierzonego sygnatu oraz szu-
my odbiornika. Na przyktadzie przebiegu tréjkatnego przeanalizowano zalezno$¢ btedéw metody od wspoéfczynnika podprébkowania, liczby probek
w okresie sygnatu, mocy szuméw oraz wahan czestotliwo$ci. Metoda pomiaru sygnatéw okresowych wykorzystujgcqa podprébkowanie

Abstract. A method of measurements of periodical signals, applying 2 undersampling is presented. An algorithm of signal processing, enabling a
reduction of errors is proposed. A discussion of errors, caused by fluctuations of sampling and signal’s frequencies and a noise of a detector is
performed. A dependence of these errors on a number of samples per period, an undersampling factor and a relation between sampling and signal's

frequencies for the triangle signal was considered.
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An introduction

A continuous progress in a digital signal processing
technology enables applications of DSP in wider range of
measurements. However even the most modern DSP are
too slow for some applications. For example, to measure an
output signal of a single-mode optical fiber, a sampling
frequency in range of several GHz is necessary [1]. In these
cases an undersampling, i.e. a sampling of the measured
signal with frequency lower than Nyquist's frequency may
be a solution of this problem. An analysis of errors, caused
by fluctuations of signal's and sampling frequencies as the
function of an undersampling factor and a number of
samples per period is a subject of this work. An influence of
errors of the measurement, caused by an inaccuracy of a
detector is also taken into considerations.

A description of the method
Every periodical signal xo(t) can be expressed in form of
Fourier’s series.

M X t)=A + D Ay -cos(2-z-m-fy-t+gp)

m=1
Ao is the mean value of the signal, A, and ¢ - the
amplitude and the phase of its m-th harmonic component
and fo - a frequency of the signal.

To apply any digital signal processing algorithm, the
signal should be sampled. Its period ought to be
represented by N samples. To use FFT algorithm the
number of samples must be a power of 2. To realize an
undersampling of the signal, it must be sampled once
during M+1 periods, where M is an integer number (the
undersampling factor), and the phase difference between
two successive samples must equal to (fo-N)'1. The
sampling period Tq4o must satisfy a following condition [2-6]

(2) Tyo=fo'-(M+N7").

This method would operate correctly, when the
condition, expressed by (2) is satisfied exactly. In an
opposite case phases of succeeding samples differ, what
generates additional errors. This factor ought to be taken
into considerations. Assuming that relative stabilities of
signal's frequency and sampling period are respectively &f
and 8Ty, the real values of the frequency of the signal f and
the sampling period T4 can be expressed as [7]:

(3) f="f-(1+),

4) Ty =Tao-(1+3Ty).

Taking (3) and (4) into account, k-th sample of the
measured signal can be written as

(5) x(k): A+ iAm -cos{wﬁ+5{p)+¢m]
m=1

where

(6) §(D=6T+5Td+éf5rd

A sigma undersampling is based on an integrating of the
signal before the sampling. When the integration of the
output signal is performed during the sampling period Tg,
the output signal of the integrator y(t) can be expressed as

(7]

t+M-T+T/2-N
y(t)= X(t).dtzw+
t-T/2-N N
) sm(m'”j
+l§:Arn ~—N~cos(2-m-7z~ f-t+ )
N & m-z Pm
N

In (7), m-th harmonic component of the signal is
attenuated with factor sin(mt/N)/(mTi/N). It delimits the
bandwidth of the signal according to Shannon's theorem,
what enables an avoidance of an aliasing effect. The rise of
the mean value of the signal is undesirable, because it
might saturate the integrator. Nevertheless, it can be easily
reduced by an appropriate initial value of the integrator. To
retrieve the original signal a digital filter should be applied.
Its transfer function H(f) must satisfy a following condition

(8) X(m-fy)=H(m-f,)-Y(m-f,).

where X(f) and Y(f) are the spectra of the signals x(t) and
y(t), respectively.

This filter can be realized as the finite response filter,
which transfer function H(z) is given as below:

9) H(z)= Y h(n)-z™",
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h(n)= -1) —
) T~(M~N+1)+( ) 2T
(10) 5 N/Z_lm'ﬂ'COSZ'm'n'ﬂ'
L2y N N
m=1 sin

When the initial value is applied in the integrator, the first
component of this sum must be properly corrected.

In order to avoid accidental errors of the measurement a
multiple repetition of the measurements is required. It is
realized by means of a specific algorithm of calculations [7],
which operates in few steps. A measurement of single
period is repeated P times. In the first step FFT of every
period is calculated. Afterwards, a geometrical mean value
of all FFTs gives the mean spectrum and enables
synchronization of the signal. In the third step - the values
of the samples are obtained as IFFT of the geometric mean.
In the end, signal is filtered by the filter H(z). This algorithm
is described by (11)-(14).

(11) Y(p,n)= :gy(k)exp(— j 2”N¢j
(12) Y(n){ﬁY(p,n)}

p=1
(13) V(k)=ﬁ~ :lgolY_(n) exp(j : 2'”&"'”)
(14) x(k)= '3 5(0)- hik i)

i=0

In these formulas y(k) denotes the value of y(t) for t=k-Tg,
Y(p,n) - the n-th value of FFT of the integrator's output
signal, Y(n) - the n-th value of the mean of all FFTs, y(k) -
the mean value of the k-th sample of the integrator's output
signal and X(k) - the mean value of the kth sample of the
signal, obtained at the output of the filter h(n).

When the measured signal is comparable to an
accuracy of the deceiver, it may lead to additional errors. To
estimate errors caused by this effect, Gaussian noise of the
mean value 0 and variance o7 is added to signal x(t).

An estimation of an efficiency of the method

The efficiency of the method, described in the previous
section is estimated basing on values of the error &, defined
as

15 0=
1o XOmax'P'N

where Xomax is the maximum value of the signal. Simulations
were performed for probability density p(f), given as [7]

1 1
f)= : - f
P(f) fo - o rec{fo-éf OJ’

because in this case the largest values of errors were
obtained. Therefore this criterion of the accuracy of this
method is chosen. Additionally, it was assumed, that the
time of the measurement is short enough in order that both
frequencies remain constant. In this case the errors of both
phases accumulate and the errors maximize.

(16)

Simulations were performed simultaneously for the
sigma undersampling and the sampling in the same
conditions. Calculations were repeated P=10° times. The
mean values of the spectra and the samples in the cases of
the sampling and the undersampling were calculated
according to the same algorithm, described above. Both
methods are compared, using values of errors, defined by
(15). The simulations were performed for a triangle signal
and their results are divided into 3 cases.
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Fig. 1. A dependence of the error 8 on N and P,/Ps for the
sampling (8;=614=0)
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Fig. 2. The quotient of the errors & for the sigma undersampling
(M=100) and the sampling as the function of N and P, /Ps, 8=574=0
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Fig. 3. The quotient of the errors & for the sigma undersampling
(N=256) and the sampling as the function of M and P,/Ps, =014=0

relative error

Fig. 4. The quotient of the errors & for the sigma undersampling
and the sampling as the function of M and N, P,/Ps=0,25, 5=514=0

The results of calculations, presented on Figures 1-4,
refer to a situation, when errors of both frequencies are
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omitted and only errors of a deceiver influence the results of
the measurement. The relative error denotes the quotient of
the errors & for ¥ undersampling and the sampling. The
parameter P, / Ps is the quotient of the power of the
deceiver's noise (for Gaussian noise P, = 02) and the power
of measured signal. The results exhibite, that in this case
undersampling is an effective method of a significant
reduction of the errors of the measurement. An extension of
time of the measurement substantially reduces the mean
value of the noise.

error f ' 0 0 02 error Td x10

Fig. 5. The error & as the function of & and drq for the sampling
(N=256, P,/Ps=0)
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Fig. 6. The error & as the function of N for the sampling (& = 814 =
10, P,/P=0)
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Fig. 7. The error & as the function of & and
undersampling ( N=256, M=100, P,/Ps=0 )

delta

Fig. 8. The error & as the function of M and N for the undersampling
(Br=51=10", P,/Ps=0 )

The results of the calculations, shown on Figures 5-8,
concern the case, when the inaccuracy of the deceiver is
neglected, whereas only fluctuations of both frequencies
occur. In this case only the absolute values of & are
presented, because the relative errors are in the range of
10°. It is caused by the summation of the phase errors,
when the time of the measurement gets longer. However
the absolute values of the errors obtained for the
undersampling are less than 1% and absolutely acceptable.

Additionally, one should notice, that the errors in range of
107, presented on Fig. 5, are practically unachievable.
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Fig. 9. The error & for the sampling (N=256, P.,/Ps=0,25) as the
function of & and &g
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Fig. 10. The quotient of errors & for the undersampling and the
sampling (N=256, M=100,P,/Ps=0,25) as the function of &; and dr4
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Fig. 11. The error & as the function of & and &4 for the sampling
(N=256, P,/Ps=0,25)
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Fig. 12.  The quotient of the errors & for the sigma undersampling
(M=100) and the sampling as the function of N and P, /P,
5=514=10"°
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Fig. 13. The quotient of the errors & for the sigma undersampling
(N=256) and the sampling as the function of M and P, /Ps,
5=014=10"°
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Fig. 14. The quotient of the errors & for the sigma undersampling
and the sampling as the function of M and N, P,/Ps=0,25,
5=514=10"°

The last set of results, presented on Figs. 9-14,
concerns the case, when both kinds of disturbances have
been taken into account. It proves a great efficiency of the X
undersampling in comparison to the sampling, especially for
greater values of the parameter P,/Ps. The values of the
relative errors are significantly less than 1, with few
exceptions.

Conclusions

The results of the simulations prove, that X
undersampling can be the effective method of the
measurement of periodical signals in the presence of
disturbances. It significantly decreases errors of the
measurements in the comparison to the sampling. The %
undersampling is especially effective in the cases, when the
errors of the detector are comparable to the signal. The
integrating of the signal decreases the influence of the
noise on the results of the measurements. The increase of
errors, caused by the summation of phase errors is less
important.

The accuracy of the method is valid on the condition,
that the algorithm, basing on FFT and IFFT is used to
obtain the mean value of the signal.

Despite that the results of the simulations are presented
for only a triangle signal, similar values have been obtained
for other periodical signals.
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