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Streszczenie. Zaprezentowano metodę pomiaru sygnałów okresowych wykorzystującą podpróbkowanie Σ. Przedstawiono algorytm przetwarzania 
sygnałów, umożliwiający redukcję błędów pomiarowych, spowodowanych przez wahania częstotliwości próbkowania i mierzonego sygnału oraz szu-
my odbiornika. Na przykładzie przebiegu trójkątnego przeanalizowano zależność błędów metody od współczynnika podpróbkowania, liczby próbek 
w okresie sygnału, mocy szumów oraz wahań częstotliwości. Metoda pomiaru sygnałów okresowych wykorzystującą podpróbkowanie Σ 
 
Abstract. A method of measurements of periodical signals, applying Σ undersampling is presented. An algorithm of signal processing, enabling a 
reduction of errors is proposed. A discussion of errors, caused by fluctuations of sampling and signal’s frequencies and a noise of a detector is 
performed. A dependence of these errors on a number of samples per period, an undersampling factor and a relation between sampling and signal's 
frequencies for the triangle signal was considered. 
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An introduction 

A continuous progress in a digital signal processing 
technology enables applications of DSP in wider range of 
measurements. However even the most modern DSP are 
too slow for some applications. For example, to measure an 
output signal of a single-mode optical fiber, a sampling 
frequency in range of several GHz is necessary [1]. In these 
cases an undersampling, i.e. a sampling of the measured 
signal with frequency lower than Nyquist's frequency may 
be a solution of this problem. An analysis of errors, caused 
by fluctuations of signal's and sampling frequencies as the 
function of an undersampling factor and a number of 
samples per period is a subject of this work. An influence of 
errors of the measurement, caused by an inaccuracy of a 
detector is also taken into considerations. 
 
A description of the method 
 Every periodical signal x0(t) can be expressed in form of 
Fourier’s series. 
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A0 is the mean value of the signal, Am and φm - the 
amplitude and the phase of its m-th harmonic component 
and f0 - a frequency of the signal. 

To apply any digital signal processing algorithm, the 
signal should be sampled. Its period ought to be 
represented by N samples. To use FFT algorithm the 
number of samples must be a power of 2. To realize an 
undersampling of the signal, it must be sampled once 
during M+1 periods, where M is an integer number (the 
undersampling factor), and the phase difference between 
two successive samples must equal to (f0·N)-1. The 
sampling period Td0 must satisfy a following condition [2-6] 
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This method would operate correctly, when the 
condition, expressed by (2) is satisfied exactly. In an 
opposite case phases of succeeding samples differ, what 
generates additional errors. This factor ought to be taken 
into considerations. Assuming that relative stabilities of 
signal's frequency and sampling period are respectively δf 
and δTd, the real values of the frequency of the signal f and 
the sampling period Td can be expressed as [7]: 

(3)                               fff  10 ,  

(4)                            ddd TTT  10 . 

Taking (3) and (4) into account, k-th sample of the 
measured signal can be written as 
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where 

(6)                            dd TfTf   . 

A sigma undersampling is based on an integrating of the 
signal before the sampling. When the integration of the 
output signal is performed during the sampling period Td, 
the output signal of the integrator y(t) can be expressed as 
[7] 
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In (7), m-th harmonic component of the signal is 
attenuated with factor sin(mπ/N)/(mπ/N). It delimits the 
bandwidth of the signal according to Shannon's theorem, 
what enables an avoidance of an aliasing effect. The rise of 
the mean value of the signal is undesirable, because it 
might saturate the integrator. Nevertheless, it can be easily 
reduced by an appropriate initial value of the integrator. To 
retrieve the original signal a digital filter should be applied. 
Its transfer function H(f) must satisfy a following condition 

 (8)                     000 fmYfmHfmX  .           

where X(f) and Y(f) are the spectra of the signals x(t) and 
y(t), respectively. 
 This filter can be realized as the finite response filter, 
which transfer function H(z) is given as below: 
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When the initial value is applied in the integrator, the first 
component of this sum must be properly corrected. 
 In order to avoid accidental errors of the measurement a 
multiple repetition of the measurements is required. It is 
realized by means of a specific algorithm of calculations [7], 
which operates in few steps. A measurement of single 
period is repeated P times. In the first step FFT of every 
period is calculated. Afterwards, a geometrical mean value 
of all FFTs gives the mean spectrum and enables 
synchronization of the signal. In the third step - the values 
of the samples are obtained as IFFT of the geometric mean. 
In the end, signal is filtered by the filter H(z). This algorithm 
is described by (11)-(14). 
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In these formulas y(k) denotes the value of y(t) for t=k·Td, 
Y(p,n) - the n-th value of FFT of the integrator's output 
signal, Y̅(n) - the n-th value of the mean of all FFTs, y̅(k) - 
the mean value of the k-th sample of the integrator's output 
signal and x̅(k) - the mean value of the kth sample of the 
signal, obtained at the output of the filter h(n). 
 When the measured signal is comparable to an 
accuracy of the deceiver, it may lead to additional errors. To 
estimate errors caused by this effect, Gaussian noise of the 
mean value 0 and variance σ2 is added to signal x(t). 
 
An estimation of an efficiency of the method 
  The efficiency of the method, described in the previous 
section is estimated basing on values of the error δ, defined 
as 
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where x0max is the maximum value of the signal. Simulations 
were performed for probability density p(f), given as [7] 
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because in this case the largest values of errors were 
obtained. Therefore this criterion of the accuracy of this 
method is chosen. Additionally, it was assumed, that the 
time of the measurement is short enough in order that both 
frequencies remain constant. In this case the errors of both 
phases accumulate and the errors maximize. 

 Simulations were performed simultaneously for the 
sigma undersampling and the sampling in the same 
conditions. Calculations were repeated P=105 times. The 
mean values of the spectra and the samples in the cases of 
the sampling and the undersampling were calculated 
according to the same algorithm, described above. Both 
methods are compared, using values of errors, defined by 
(15). The simulations were performed for a triangle signal 
and their results are divided into 3 cases. 
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Fig. 1. A dependence of the error δ on N and Pn/Ps for the 
sampling (δf =δTd=0) 
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Fig. 2. The quotient of the errors δ for the sigma undersampling 
(M=100) and the sampling as the function of N and Pn /Ps, δf=δTd=0 
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Fig. 3. The quotient of the errors δ for the sigma undersampling 
(N=256) and the sampling as the function of M and Pn /Ps, δf=δTd=0 
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Fig. 4. The quotient of the errors δ for the sigma undersampling 
and the sampling as the function of M and N, Pn/Ps=0,25, δf=δTd=0 

The results of calculations, presented on Figures 1-4, 
refer to a situation, when errors of both frequencies are 
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omitted and only errors of a deceiver influence the results of 
the measurement. The relative error denotes the quotient of 
the errors δ for Σ undersampling and the sampling. The 
parameter Pn / Ps is the quotient of the power of the 
deceiver's noise (for Gaussian noise Pn = σ2) and the power 
of measured signal. The results exhibite, that in this case Σ 
undersampling is an effective method of a significant 
reduction of the errors of the measurement. An extension of 
time of the measurement substantially reduces the mean 
value of the noise. 
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Fig. 5. The error δ as the function of δf and δTd for the sampling 
(N=256, Pn/Ps=0 ) 
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Fig. 6. The error δ as the function of N for the sampling (δf  = δTd = 
10-6, Pn/Ps=0) 
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Fig. 7. The error δ as the function of δf and δTd for the 
undersampling ( N=256, M=100, Pn/Ps=0 ) 
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Fig. 8. The error δ as the function of M and N for the undersampling 
(δf =δTd=10-6, Pn/Ps=0 ) 
 

The results of the calculations, shown on Figures 5-8, 
concern the case, when the inaccuracy of the deceiver is 
neglected, whereas only fluctuations of both frequencies 
occur. In this case only the absolute values of δ are 
presented, because the relative errors are in the range of 
103. It is caused by the summation of the phase errors, 
when the time of the measurement gets longer. However 
the absolute values of the errors obtained for the 
undersampling are less than 1% and absolutely acceptable. 

Additionally, one should notice, that the errors in range of 
10-5, presented on Fig. 5, are practically unachievable. 
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Fig. 9. The error δ for the sampling (N=256, Pn/Ps=0,25) as the 
function of δf and δTd 
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Fig. 10. The quotient of errors δ for the undersampling and the 
sampling (N=256, M=100,Pn/Ps=0,25) as the function of δf and δTd  
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Fig. 11. The error δ as the function of δf and δTd for the sampling 
(N=256, Pn/Ps=0,25 ) 
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Fig. 12. The quotient of the errors δ for the sigma undersampling 
(M=100) and the sampling as the function of N and Pn /Ps, 
δf=δTd=10-6 
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Fig. 13. The quotient of the errors δ for the sigma undersampling 
(N=256) and the sampling as the function of M and Pn /Ps, 
δf=δTd=10-6 
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Fig. 14. The quotient of the errors δ for the sigma undersampling 
and the sampling as the function of M and N, Pn/Ps=0,25, 
δf=δTd=10-6 

The last set of results, presented on Figs. 9-14, 
concerns the case, when both kinds of disturbances have 
been taken into account. It proves a great efficiency of the Σ 
undersampling in comparison to the sampling, especially for 
greater values of the parameter Pn/Ps. The values of the 
relative errors are significantly less than 1, with few 
exceptions. 
 
Conclusions 
 The results of the simulations prove, that Σ 
undersampling can be the effective method of the 
measurement of periodical signals in the presence of 
disturbances. It significantly decreases errors of the 
measurements in the comparison to the sampling. The Σ 
undersampling is especially effective in the cases, when the 
errors of the detector are comparable to the signal. The 
integrating of the signal decreases the influence of the 
noise on the results of the measurements. The increase of 
errors, caused by the summation of phase errors is less 
important. 
 The accuracy of the method is valid on the condition, 
that the algorithm, basing on FFT and IFFT is used to 
obtain the mean value of the signal. 

 Despite that the results of the simulations are presented 
for only a triangle signal, similar values have been obtained 
for other periodical signals. 
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