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Disturbance observer based control  
of active suspension system with uncertain parameters 

 
 

Streszczenie. Artykuł przedstawia układ sterowania pojedynczej osi aktywnego zawieszenia pojazdu z zastosowaniem obserwatora zakłóceń (DO). 
Obserwator przeciwdziała zakłóceniom poprzez kompensację w torze głównym obliczaną na podstawie sygnału sterującego i sprzężenia stanu z 
nominalnym modelem obiektu. Zaproponowany sposób sterowania został zweryfikowany eksperymentalnie.  
(Sterowanie układem aktywnego zawieszenia z niepewnymi parametrami z zastosowaniem obserwatora zakłóceń).  
 
Abstract. The paper deals with application of the disturbance-observer (DO) based control to a quarter car active suspension system with uncertain 
parameters.The DO counteracts disturbances by feedforward compensation computed on the basis of the control input, the state feedback and the 
nominal system model. The proposed control scheme is verified experimentally on a mechatronic laboratory model. 
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Introduction 

A vehicle suspension plays a crucial role in isolating 
passengers from vibrations generated by road surface 
roughness and improving vehicle handling and safety by 
keeping tires in uninterrupted contact with the road. 
Unfortunately, requirements concerning ride comfort and 
vehicle handling (formulated e.g. in terms of maximum 
vertical acceleration and the suspension stiffness and 
stroke) are generally conflicting:  ride comfort requires 
smaller suspension damping and longer stroke, better 
handling and stability requires higher stiffness, shorter 
stroke and small dynamic deflection of the tire. Therefore, 
successful designing or setting a universal passive 
suspension is difficult.  

Active suspension systems have become a popular 
research topic in recent years due to their great potential to 
handle the trade-offs between the conflicting requirements. 
They are based on electro-hydraulic actuators, placed 
parallel to passive suspension elements between the 
vehicle body and the wheel axle, and controlled directly to 
generate a desired control force to add or dissipate energy 
from the suspension system. The main factors why active 
suspension systems have not been widely used in vehicle 
production are: cost, high energy demand and complex 
control. More commonly implemented solution are semi-
active suspensions which employ dampers, whose force is 
commanded indirectly through a controlled change of the 
damping (e.g.  magnetorheological dampers use magnetic 
field of varying intensity to change viscosity of fluid with tiny 
ferrous particles  20-50 microns in diameter [1]). Control of 
a semi-active suspension is relatively simple. 

Over the past two decades the active suspension 
system has become a test bench for a wide range of control 
algorithms. Research has shown that a linear optimal 
control LQR provides a relatively easy and  efficient way to 
design a controller that can improve both ride comfort and 
handling performance [2,3]. In the LQR framework the 
model parameters are assumed to be known and an 
optimal state feedback gain that minimizes a quadratic cost 
function is obtained. However, a suspension system 
typically contains parameters that are inherently uncertain, 
first of all the sprung (body) mass that depends on the 
vehicle load. The load-dependent control proposed in [4] is 
an example of multi-objective control schemes that allow to 
achieve a compromise between several performance 
requirements and preserve good results in the presence of 
parameter variations. One recently popular control 
technique, well suited for dealing with the active 

suspension, is the disturbance observer/estimator based 
control [5,6,7]. In general, factors such as uncertain 
parameters, nonlinearities, modeling errors and external 
disturbances, can be considered as disturbances that have 
to be rejected by the control. The advantage of the DO 
approach is that it deals with disturbances by active 
feedforward compensation control (based on disturbance 
estimation) rather than by feedback control [8,9].  

This paper presents an application of a control system 
consisting of a DO combined with an LQR state feedback 
controller for damping vibrations in a linear quarter car 
active suspension system under road roughness (external 
disturbance) and uncertain parameters (internal 
disturbance). Theoretical results are verified in laboratory 
experiments. 

 
Model of a quarter car active suspension 

The two-degree-of-freedom quarter car active 
suspension system is shown in Figure 1. 

 
Fig.1. Quarter car active suspension system model 

 
It consist of sprung mass ms, representing the vehicle 

body and load, and unsprung mass mu, representing the 
wheel and its associated parts; the passive parts of the 
suspension: the spring and the damper,  are assumed to be 
linear, so they are described by constant spring and 
damping coefficients ks and bs respectively. The tire 
elasticity is also linear, represented by spring coefficient kt, 
the tire damping is neglected. Fc(t) represents the active 
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suspension actuator control force. Variables zs(t) and zu(t) 
are vertical displacements of the sprung and unsprung 
masses, zr(t) is the road level disturbance input. The 
dynamics of the active suspension system is described as: 
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To present the active suspension system in the state 
space form we define the following state and measured 
output variables: 
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The state space equations of the system take the form: 
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with control input u=Fc, external disturbance d=zr, and the  
following system matrices:  
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The system is controllable form the defined input u and 
observable form the defined output y. 
 
Disturbance observer [5] 

Disturbance rejection is one of the key objectives in 
control design. Popular control approaches, like robust 
control, adaptive control or sliding mode control (SMC), are 
based on rejection of disturbances by feedback control, 
which is referred to as the passive antidisturbance control.  

The active antidisturbance control counteract 
disturbances directly by faster feedforward compensation 
based on disturbance estimates. A disturbance observer  
can be used when application of a sensor to measure the 
disturbance is impossible or unreasonable. 

The disturbance d(t) in the active suspension state 
space  model (3) is an unmatched disturbance since the 
input channels for control u(t)  and the disturbance are 
different (corresponding input matrices in (3) are not equal: 
BBd), which requires a more general approach. 

Let us assume that the nominal plant matrices (An, Bn, 
Cn, Dn) are known, but the true matrices (A, B, C, D) are 
uncertain. We define lumped disturbances dlx and dly acting 
on the plant states and outputs: 
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The lumped disturbances include external disturbances and 
internal disturbances from the plant parameter uncertainties 
and other reasons. The equations of the plant using the 
lumped disturbances take the following form: 
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We will make the following assumptions: 

(i) Disturbance dlx varies slowly relative to the DO dynamics 
and tends to a constant steady state: limt∞ḋlx =0 
(ii) State variables x(t) are available (both the DO and the 
LQR controller require the state feedback). 

Now we define a linear DO for estimating disturbance 
dlx in the following form: 
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where L is the DO gain matrix to be designed. The 
disturbance estimation error and its derivative: 
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Thus, if the DO gain matrix L is Hurwitz and assumption (i) 
is satisfied, the DO estimation error decays asymptotically 
to zero. The coefficients of L should be chosen so that the 
observer response is much faster than the main closed loop 
response and the disturbance variations. 

The estimate of disturbance dly  can be obtained directly 
from the algebraic nominal output equation: 

(10)  ˆ
ly n nu  d y C x D  

Clearly, estimation error edly=dly-d̂ly=0. Note that estimation 
of disturbance dly  requires the output feedback. 

In general, the unmatched disturbances cannot be 
attenuated from the state equations. However, it is possible 
to remove the disturbances from the output in steady-state 
(i.e. assure that limt∞y=0) using the following composite 
control law: 

(11)  ˆ
d lu   Kx K d  

where d̂l = [d̂lx, d̂ly]
T and -Kx is the standard state (e.g. 

LQR) feedback, by the following choice of  the lumped 
disturbance estimate gain Kd = [Kdx, Kdy]: 
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where H=(Cn-DnK)(An-BnK)-1. 
The diagram of the control system with the main state  

feedback and the lumped disturbance compensation is 
shown in Figure 2. The internal structure of the proposed 
DO is presented in Figure 3. 

 
Fig.2. Diagram of the control system with the state  feedback and 
compensation of the lumped disturbance  
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Fig.3. Internal structure of the disturbance observer for estimation 
of unmatched disturbances 
 
Laboratory setup 

The effectiveness of the DO based control presented in 
Figures 2 and 3 was verified experimentally using a 
laboratory setup with a mechatronic model of the quarter 
car active suspension shown in Figure 4.  

 

Fig.4. Mechatronic model of the quarter car active suspension 
 

Metal plates, representing the sprung mass, the 
unsprung mass and the road, are interconnected with pairs 
of springs and linear bearings working as low friction 
dampers. Mechanical parameters of the active suspension 
system are given in Table 1.The active suspension actuator 
is a high efficiency, low inductance DC servomotor with fast 
dynamic response (the control force bandwidth is 50 Hz). It 
is supplied (as well as the road simulator DC servomotor) 
from a linear PWM current amplifier. The setup is equipped 
with three high resolution encoders (4000/4096 counts per 
full rotation) that allow direct measurements of the 
suspension deflection and displacements of the sprung 
mass and the road level. Vertical velocities can be 
calculated as differences between successive displacement 
readings. An accelerometer capable of measuring both 
static and dynamic vertical acceleration up to 10G is 
mounted on the sprung mass plate. Thus, all the defined 
state and output variables are available for control. 

The DO based control algorithm was implemented as a 
Simulink block diagram on a PC computer with a 
multichannel data acquisition card and run in real time with 
sampling frequency fs=1000 Hz.  

Table 1. Parameters of the active suspension experimental setup 

Parameter Value Units 
ms 2.45 kg 
mu 1 kg 
ks 900 N/m 
bs 7.5 Ns/m 
kt 2500 N/m 
bt 5 Ns/m 
rattle space 0.038 m 

Results of experiments 
The presented laboratory experiments show the effects 

of the DO based control in the presence of both  external 
(road roughness) and internal disturbance. The internal 
disturbance was an uncertain value of the sprung mass: the 
nominal mass used to design the composite control law (11) 
was msn=2.45 kg, while the true mass was ms=2.95 kg. 

The state feedback gain was designed using the LQR 
method. Minimization of the cost functional: 

(13)   2

0

T
LQRJ u dt



  x Qx R  

with weighting matrices: 

(14)     diag 500 50 5 0.1 , [0.1] Q R  

yielded the optimal feedback gain matrix: 

(15)     16.51   64.99  -65.58    3.440K  

The choice of the DO gain matrix: 

(16)         diag 50 50 50 50L  

assures that the DO dynamics is much faster than that of 
the LQR closed loop and than variations of the external 
disturbance. Calculation of the DO compensation gains 
using formulas (13) for the nominal plant parameters (Table 
1) and the feedback gain (15) gives:  

(17)     72.49    2.514   68.43    0.0262 , 916.5 0dx dy K K  

Figure 5 shows the sprung mass displacement zs 
(vehicle body) response to the road level zr  (external 
disturbance) in the form of a steep bump with flat top (zr 
tends to a constant). The bump step-like profile is defined 
by maximum velocity żrmax=0.2 m/s and acceleration 
z̈rmax=10 m/s2. In this case the active suspension 
parameters are exactly known. The graphs show good 
effectiveness of the LQR control in attenuating weakly 
damped oscillations of the open-loop suspension system. 
Adding the DO improves the control quality even more. 

 Figure 6 presents the vertical displacements zu, zs in 
response to the road bump under uncertain sprung mass 
(the LQR controller and the DO are designed for the 
nominal mass msn). Note that – in contrast to the LQR 
control only – the DO based control removes the 
disturbance effect at the system output: the suspension 
deflection  y1=zs-zu is reduced to zero in the steady state. 
However, the steady state displacements zu, zs are still not 
equal to zr (it would require an integral control). Another 
advantage is that adding the DO causes a slight reduction 
of the top sprung mass acceleration.  

 
Fig. 5. Sprung mass level zs response to road level zr bump for: a) 
open-loop suspension system (no active damping), b) closed-loop 
with LQR controller, c) closed-loop with LQR controller and DO     
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Fig. 6. Quarter car wheel (unsprung mass) and body (sprung mass) 
displacements zu, zs in response to the road bump under uncertain 
sprung mass ms: a) LQR control, b) LQR control and DO.   
 

Comparison of theoretical frequency responses from  
the road level disturbance zr  to the suspension deflection  
zs-zu in Figure 7 confirms that the closed-loop with the DO is 
a differentiator for low frequency disturbances, in particular 
it reduces the steady-state suspension deflection to zero.  

Figure 8 presents the waveforms of the voltage control 
signal, equivalent to actuator force Fc and corresponding to 
the active suspension behavior shown in Figures 6 and 7. 
The pure LQR control maintains a constant control in the 
steady state for a nonzero road level disturbance (it results 
in a nonzero suspension deflection). The advantage of the 
DO is that it produces at the same time a control 
component of the opposite sign, which reduces the total 
control effort almost to zero. The operation of the DO is 
illustrated in Figure 9, which presents two nonzero  
components of lumped disturbance estimate d̂lx versus time 
(in the considered conditions component d̂ly=0). The 
internal disturbance (resulting from not exact sprung mass 
ms) is estimated as dl2 (because ms occurs only in the 
second row of matrix A, see equations (4)), the external 
disturbance (road level) is estimated as dl4 (because the 
only nonzero coefficient of Bd is in the 4th row). 

 
Fig. 7. Theoretical magnitude frequency responses from road level 
disturbance zr to suspension deflection zs-zu  

 
Concluding remarks 
 The DO can be added as  an extension of the main 
control loop. It estimates and counteracts both external and 
internal disturbances so the control enhances performance 
of the system and is more robust. However, effectiveness of 
the DO is limited to low frequency disturbances. The 
experimental results showed that the DO based control 
cancels the steady state deflection of the active suspension 
occurring for the pure LQR control and consequently 
reduces the control effort under a constant disturbance.  It 
can also improve dynamic properties of the control system.  

 Further research should go towards more general 
nonlinear model of the active suspension and a nonlinear 
DO, integration of the DO with (extended) state observer 
and applying more advanced control algorithms.  

 
Fig. 8. Waveforms of the voltage control signal, equivalent to the 
suspension actuator force Fc in Newtons, corresponding to the 
active suspension behavior shown in Fig. 7 and 8 

 
Fig. 9. Waveforms of nonzero components of the DO lumped 
disturbance estimate d̂lx 
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