
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 12/2016                                                                                     153 

Tomasz RYMARCZYK1, Paweł TCHÓRZEWSKI1 

Netrix S.A., Research and Development Center (1) 
 

doi:10.15199/48.2016.12.39 
 

Topological Methods to Determine Damages of Flood 
Embankments 

 
 

Abstract. This paper presents a method of testing flood embankment. There was used a specially built laboratory model to determine the moisture 
level of flood embankments. The finite element method was used to solve the forward problem. The proposed algorithm was initialized by using one 
step methods and topological sensitivity analysis. There was solved the inverse problem in order to visualize moisture inside objects. There was 
made possible to change topology during the optimization. The level set method and the Gauss-Newton method have been applied very 
successfully in many areas of the scientific modelling. Topological algorithms were based on shape sensitivity include the boundary design of the 
elastic interface. These algorithms are a relatively new procedure to overcome this problem. 
 
Streszczenie. Artykuł przedstawia metodę badania wału przeciwpowodziowego. Został zbudowany specjalny model laboratoryjny wału w celu 
określenia poziomu wilgotności. Do rozwiązania zagadnienia prostego została wykorzystana metoda elementów skończonych. Proponowany 
algorytm inicjowany jest metodą jednokrokową i rozwiązywany topologiczną analizą wrażliwościową. Rozwiązano zagadnienie odwrotne w celu 
wizualizacji wilgoci wewnątrz obiektów, poprzez zmianę topologii podczas procesu optymalizacji. Metody zbiorów poziomicowych i Gaussa-Newtona 
stosuje się z dużym powodzeniem w wielu dziedzinach modelowania naukowego. Metody topologiczne opierają się na analizie wrażliwościowej 
dostosowując kształt brzegu elastycznego interfejsu. Algorytmy te są relatywnie nowymi rozwiązaniami dla tego typu problemu. (Metody 
topologiczne do określania uszkodzeń w wałach przeciwpowodziowych). 
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Introduction 
 This paper presents the new method examining the 
flood embankment dampness by electrical impedance 
tomography (EIT) [2,8,9,11]. Numerical methods of the 
shape and the topology optimization were based on 
topological algorithms. Discussed techniques can be 
applied to the solution of inverse problems in electrical 
impedance tomography [1,3,4,13]. There were implemented 
algorithms to identify unknown conductivities (dampness). 
The purpose of the presented methods is obtaining the 
image reconstruction by the proposed solution. Numerical 
methods of the shape and the topology optimization were 
based on Gauss-Newton method and the level set function.  
 

 
 
Fig. 1. The architecture of the flood embankment system 
 
There were implemented algorithms to identify unknown 
conductivities (dampness) [10]. Numerical methods of the 
shape and the topology optimization were based on the 
level set representation and the Gauss-Newton method. 
Level set methods have been applied very successfully in 
many areas of the scientific modelling, for example in 
propagating fronts and interfaces [5-7,12]. Therefore, there 
were used to study shape optimization problems. Instead of 
using the physically driven velocity, the level set method 
typically moves the surfaces by the gradient flow of an 
energy functional. The architecture of the flood 
embankment system is presented in Figure 1. 

Electrical impedance tomography 
 Electrical impedance tomography image reconstruction 
problem is an ill-posed inverse problem. In EIT, electrical 
voltages are injected into an object using a set of electrodes 
attached on the surface of the object and the potentials are 
measured. The conductivity of the object is reconstructed 
based on the known voltages and measured potentials. 
Electrical impedance tomography reconstruction requires 
accurate modeling. EIT is an imaging modality in which the 
conductivity distribution of an examined object is estimated 
from measurements of electrical voltages and electrode 
potentials at the boundary. To achieve quantitative 
information of the conductivity change, it would be 
preferable to use a non-linear model in the solution of the 
difference imaging. Non-linear difference imaging 
approaches for reconstruction of changes in a target 
conductivity from EIT measurements. The proposed 
algorithm is evaluated both with simulated measurements 
and real data. The image reconstruction is a highly ill-posed 
inverse problem. The forward problem in EIT is described 
by Laplace’s equation: 
(1)  0)(   u  

where: γ denotes conductivity, symbol u represents 
electrical potential. 
 The level set method is a numerical technique which 
can follow the evolution of interfaces (Fig. 2). These 
interfaces can develop sharp corners, break apart and 
merge together. The level set function relies on the shape 
derivative, while the topological gradient method is 
depended on the material derivative. The topological 
method is based on the differentiability of solutions to 
variational inequalities with respect to the coefficients of the 
governing differential operator. For the minimization 
problem iterative coupling of the level set method and the 
topological gradient method have been proposed. Both 
methods can be cast into the framework of alternate 
directions descent algorithms. A Gauss-Newton method is 
deployed to the regularized tangential movement problem. 
The electrodes move tangentially to the domain at each 
iteration and so do not in general lie on the boundary of the 
domain after each iteration. 
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Fig. 2. The idea of the level set function 
 

The motion is seen as the convection of values (levels) 
from the function ϕ with the velocity field 


. Such a process 

is described by the Hamilton-Jacobi equation: 
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is the desired velocity on the interface, and is 
arbitrary elsewhere. Actually, only the normal component of 
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We can update the level set function ϕ by solving 
discretized version of the Hamilton-Jacobi equation: 
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Transforming above equation we get: 
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The gradient of the level set function in the k-th time step 

( k ) has been calculated by the essentially non-

oscillatory (ENO) polynomial interpolation scheme. The 
stability of received solution is achieved by Courant-
Friedreichs-Lewy condition (CFL condition): 
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Inequality (6) is satisfied by choosing the CFL number α: 
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where: 0 < α < 1. The optimum value equals 0.9. 

The calculated velocity must be extended off the interface 
to the whole domain. This process is called the extension of 
velocity and is based on the solution of the additional partial 
differential equation: 
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where S(ϕ) is defined as following: 
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In (9) |ε| << 1. Additionally, we need extend velocity to 
neighbourhood of the interface, by defining velocity along 
normal direction. 
Reinitialization is necessary when flat or steep regions 
complicate the determination of the zero contour. The level 
set function ϕ is signed distance function if at given time for 
every point: 

(10) .1  

Reinitialization is based on replacing ϕ by another function 
that has the same zero level set, but satisfies condition (10). 
This process is described by following partial differential 
equation: 
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Differential equation (11) is solved until a steady state is 
achieved. Similar to the velocity extension a first order 
upwind scheme for the spatial dimension and forward Euler 
time discretization is used. 

The topological method is based on so-called conical 
differentiability of solutions to variational inequalities with 
respect to the coefficients of the governing differential 
operator. It is required that the metric projection in the 
energy space. Such property is sufficient to obtain the 
directional differentiability of solutions to the variational 
inequality with respect to the boundary variations and the 
changes in the topology. A useful concept for calculating 
derivatives for cost functional is the so-called material and 
shape derivative of states u. In the application of inverse 
problems, these states typically are the solutions of partial 
differential equations which model the probing fields and 
which depend in one way or another on the shape. 
Let λ be the adjoint function satisfying: 

(12) .Δλ muu   

The material derivative )(u x  is given by: 
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where 
tΩ)y(x,  . The shape derivative is following: 
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The steepest descent direction 


 is given by: 
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In next step the level set function is updated: 

(16)   .1 tu kkkkk    

For the minimization problem, iterative coupling of the level 
set method and the topological gradient method have been 
proposed. Both methods are gradient-type algorithms, and 
the coupled approach can be cast into the framework of 
alternate directions descent algorithms. One step methods 
and topological algorithms were used to solve this problem.  

The proposed algorithm is iterative method, structured 
as follows (Fig. 3): 
 calculate one step Gauss-Newton method, 
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 initialization the zero level set function, 
 use the finite element method to solve the Laplace’s 

equation, 
 compute the difference of the obtained solution with 

the observed data, 
 solve the Poisson’s equation, 
 calculate velocity, 
 update the level set function, 
 reinitialize the level set function. 

The level set function relies on the shape derivative, while 
the topological gradient method is based on the material 
derivative. 

 
Fig. 3. The scheme of the algorithm to minimize the objective 
function 
 
Model 
 There was prepared a special model of the flood 
embankment (Fig. 4). Figure 5 presents the laboratory 
measurement system. 
 

 
Fig.4. The geometrical laboratory models of the flood embankment 
 
Results 

The Gauss-Newton method and the level set method 
were used with the optimization approach. Numerical 
algorithms of shape and topology optimization were based 
on the level set representation and the shape differentiation. 
There were made topology changes possible during the 
optimization process. These approaches are based on 
shape sensitivity include the boundary design of the elastic 
interface. 

The image reconstruction obtained by the Gauss 
Newton Level Set Method with simulation data is shown in 
Figure 6. Figure 7 and 9 present the geometrical models of 
the investigated flood embankment with 16 electrodes and 
the image reconstruction by the Gauss-Newton and the 
level set methods. Figure 8, 10 and 12 present the objective 
function for the tested models. Figure 11 shows the image 
reconstruction with real data taken 15 minutes after 
flooding. 
 

 
Fig. 5. Measurement system 
 
a) 

 
b) 

 
c) 

 
d) 

 

Fig. 6. The image reconstruction obtained by the Gauss Newton 
Level Set Method with simulation data: a) the model, b) the image 
reconstruction, c) the image without mesh, d) the level set method 
component 
 
a) 

 
b) 

 
c) 

 
Fig. 7. The geometrical model I of the investigated flood 
embankment with 16 electrodes: a) the initial model, b) the image 
reconstruction by Gauss-Newton method, c) the image 
reconstruction by the level set method 
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Fig. 8. The objective function for the model in Figure 7 
 
a) 

 
b) 

 
c) 

 
d) 

 

Fig. 9. The geometrical model II of the investigated flood 
embankment with 16 electrodes: a) the initial model, b) the image 
reconstruction by the Gauss-Newton method, c) the image 
reconstruction by the level set method 
 

 
Fig. 10. The objective function for the model in Figure 9 
 
a) 

 
b) 

 

Fig. 11. The image reconstruction with real data obtained by: a) the 
Gauss Newton method, b) the Gauss Newton method with Level 
Set Method (data taken 15 minutes after flooding) 
 
Summary 
 The proposed method was verified by simulations and 
real measurements by the laboratory model. The Gauss-
Newton method and the level set function have been shown 
to be successful to identify the unknown boundary shapes. 
The presented method determines the moisture of the test 
model. These methods have been applied successfully. 

Applying the line measurement model is enough effective to 
solve the inverse problem in the moisture flood 
embankment. 
 

 
Fig. 12. The objective function for the model in Figure 11 
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