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Abstract. In the paper simple kinematic models of mechanical connections between the driving motor and the working mechanism are analyzed. As 
a result, the mathematical models of connections considered have been formulated. The scope of carried out analysis has included: rigid 
transmission shaft with zero mass, rigid transmission shaft with non-zero mass, elastic transmission shaft with zero mass, two-mass system, single-
stage rigid gear train without clearance (non-slack gear train) and multipath rigid mechanical power transmission without clearances. 
 
Streszczenie. W pracy poddano analizie proste modele kinematyczne połączeń mechanicznych silnika z mechanizmem roboczym. Sformułowano 
modele matematyczne rozważanych połączeń. W zakresie przeprowadzonej analizy znalazły się: sztywny wał napędowy o zerowej masie, sztywny wał 
napędowy o niezerowej masie, sprężysty wał napędowy o zerowej masie, układ dwumasowy, jednostopniowa sztywna przekładnia mechaniczna bez luzu 
oraz wielodrożna sztywna transmisja mocy mechanicznej bez luzów. (Proste modele matematyczne wałów napędowych i przekładni mechanicznych. 
Obwody elektryczne i mechaniczne). 
 
Keywords: mechanical power transmissions in drive systems, electrical and mechanical analogies, kinematic and mathematical models. 
Słowa kluczowe: transmisje mocy mechanicznej w napędach, analogie elektryczno-mechaniczne, modele kinematyczne i matematyczne. 
 
 

Introduction 
 Electric motors are connected with working mechanisms 
via transmission shafts that are elements of mechanical 
power transmissions. The shafts have various lengths and 
cross-sections. Mechanical power transmissions include 
also driving machineries, i.e. gear trains and clutches. 
Depending on length and cross-section, transmission shafts 
can demonstrate different susceptibilities to the impact of 
torsional moment, as measured by a value of torsional 
angle. In the case of short mechanical connections, values 
of torsional angles are insignificant and they may be omitted 
by assumption of rigid mechanical connections. In the case 
of longer mechanical connections the values of torsional 
angles cannot be ignored and such connections should be 
considered as the elastic ones. In turn, toothed gears and 
clutches are the reason of clearances in mechanical 
system, in which the mechanical power may be transmitted 
between motor and working mechanism after so-called 
“taking in the clearance”, i.e. when the one part of 
mechanism has been turned in relation to the another part 
by a certain angle 20. 

In the paper simple kinematic models of mechanical 
connections between the driving motor and the working 
mechanism are analyzed. The equivalent circuits, typical for 
electrical systems, are defined for the mechanical systems 
concerned. 

The issues based on the electrical and mechanical 
similarities were already considered in the previous papers 
of the author [1,2,3,4]. Identifying these similarities is very 
helpful for electricians in finding a relevant interpretation of 
mechanical systems, which is particularly important in the 
case of professionals dealing with electromechanical 
energy converters or drive systems. The comprehensive 
studies regarding mechanical connections used in drive 
systems can also be found in other papers, e.g. [5,6,7,8,9].  
 
Rigid transmission shaft with zero mass 

The rigid (stiff) and weightless shaft is the example of 
idealized shaft that transmits a torque. In other words, this 
is the rigid shaft with assumed zero mass m (zero moment 
of inertia J). The kinematic model of considered transmission 
shaft is shown in Fig. 1, whereas, the corresponding 
equivalent circuit is shown in Fig. 2, where M1, M2 are 
external torques applied to the both sides of the shaft, in 
particular, drive torque and anti-torque, 1, 2, 1, 2 are 
angular velocities and angles of rotation at the points of 

application of external torques to the shaft, Cs is torsional 
elasticity coefficient, D1, D2 are mechanical friction 
coefficients (resistances) defined for bearings. 
 

 
 
Fig. 1. Kinematic model of the rigid transmission shaft with zero mass 
 

 
 

Fig. 2. Equivalent circuit for the considered transmission shaft (Fig.1) 
 

The following dependencies may be adopted for the 
considered mechanical connection: 
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as well as the equation of torques: 

(2) 0 DM  

 In most cases, mechanical friction coefficients (D) do not 
have constant values and they depend on angular velocity 
or torque. Under certain conditions they can have constant 
or almost constant values. Mechanical friction coefficients 
determine loss torques associated with a type of friction or 
air resistance. In the case of kinetic dry friction, the 
corresponding loss torque is practically constant: M = D = 
b1= const i.e. mechanical friction coefficient D is inversely 
proportional to the angular velocity: D = b1|–1| and it (D) is 
always positive independently of direction of rotation. The 
constant friction coefficient corresponds with lubricated 
friction for which the loss torque is proportional to the 
angular velocity, whereas, the parabolic dependency 
between loss torque and angular velocity, i.e. D = b2, 
where b2 = const, has been adopted in order to represent the 
air resistance. 
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Rigid transmission shaft with non-zero mass 
The mass of real connecting element (transmission 

shaft) is distributed continuously along the longitudinal axis 
of the element. In simple terms, the mass may be 
considered as a lumped parameter. As a result, the 
mechanical structure and analysis become simpler. The 
rigid transmission shaft with non-zero mass is depicted in 
Fig. 3, where the real connecting element with continuous 
mass distribution has been substituted by the connection 
including two weightless elements representing its 
longitudinal dimension and one element representing its 
mass. The corresponding equivalent circuit is shown in Fig. 
4, where J is moment of inertia of shaft lumped mass. 

 

 
 

Fig. 3. Kinematic model of rigid transmission shaft with non-zero mass 
 

 
 
Fig. 4. Equivalent circuit for the considered transmission shaft (Fig.3) 

 
On the basis of the equivalent circuit (Fig. 4) the 

following equation of torques may be written by analogy to 
the equation of voltages of non-branched electrical circuit 
including voltage source and two passive elements i.e. 
resistance and inductance: 

(3)   0
d
d   JDM
t

 

The last term on the left side of the Eq. 3 is the dynamic 
torque [1]. 

  
Elastic transmission shaft with zero mass 
 The weightless elastic transmission shaft (Fig. 5), i.e. 
the shaft described by the torsional elasticity coefficient Cs 
of finite value and zero mass (negligible moment of inertia), 
may be considered as an element of the simplified drive 
system consisting of two lumped masses coupled via this 
shaft (two-mass system). 

 

 
 

Fig. 5. Kinematic model of elastic transmission shaft (long 
transmission shaft) with negligible moment of inertia 
 

 
 
Fig. 6. Equivalent circuit for the considered shaft (Fig. 5) 
 

The corresponding equivalent circuit is shown in Fig. 6, 
where Mc is torsional moment. The viscous friction inside 
the shaft has been taken under consideration (D12). 
 The quantity Sc, analogous to the capacity of capacitor in 
an electrical circuit, is the torsional susceptibility coefficient 
being equal to inversed torsional elasticity coefficient Cs: 

(4) sc CS /1  

On the basis of the equivalent circuit (Fig. 6) the following 
equations of angular velocities and torques, corresponding 
with the Kirchhoff’s circuit laws applied in order to analyze 
electrical circuits, may be written: 
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In addition, by analogy to the dependency between current 
and voltage of capacitor, the following dependency between 
angular velocity 12 and torsional moment Mc may be 
written: 

(6)      cstcctt
MCMS 1
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where (1 – 2) is angle of shaft torsion. 
 
Two-mass system 
 Representing the real mechanical systems with 
continuous mass distribution by kinematic models based on 
lumped parameters causes discrepancies in results of 
analysis in relation to accurate models [5], but considerably 
simplifies this analysis. In addition, these discrepancies 
decrease with the number of points of concentration in the 
model. Representing a drive system, containing elastic 
elements, by the model with two points of concentration 
(two-mass system – Fig. 7) allows for simplification of the 
model as much as possible but it may not in all cases be 
applied. Such mathematical description is best suited to 
mechanical systems containing the connection between 
electric motor and moving unit of working machine via long 
shaft with negligible moment of inertia in contrast to the 
significant moments of inertia of the abovementioned 
elements of mechanical system. 
 

 
 
Fig. 7. Kinematic model of two-mass system (two lumped masses 
connected via long shaft with negligible moment of inertia) 
 

 
 
Fig. 8. Equivalent circuit for the considered drive system (Fig. 7) 
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Kirchhoff’s lows based equations for the considered system 
are as follows: 
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where the dependency between angular velocity 12 and 
torsional moment Mc is given as Eq. 6. 
 
Single-stage rigid gear train without clearance 

The kinematic models of single-stage gear trains, bevel 
and helical, respectively, are depicted in Figs. 9 and 10, 
whereas the corresponding circuit diagram, analogous to 
the equivalent circuit of transformer, is shown in Fig. 11, 
where N is gear ratio defined as follows: 

(8) 21 /N  

 

 
 
Fig.9. Kinematic model of single-stage bevel gear train 
 

 
 
Fig. 10. Kinematic model of single-stage helical gear train 
 

 
 
Fig. 11 Circuit diagram of single-stage non-slack gear train 
 
The equations of torques in accordance with the circuit 
diagram (Fig. 11) are given as follows: 

(9)   0010111d
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The following dependency is true in the case of ideal gear 
train (mechanical power balance): 

(11) 2010  MM   

Thus, taking Eq. 8 into account, it may be derived: 
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After defining the new calculation quantities: 
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and dividing the Eq. 10 by N, the equation 14 of torques for 
the gear train secondary side (gear train output shaft), 
expressed in terms of gear train primary side (gear train 
input shaft), has been obtained. This equation together with 
the Eq. 9 corresponds with the equivalent circuit of gear 
train (Fig. 12). 
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The equivalent circuit considered may also be described by 
a single equation: 

(15)   01d
d

1   JDM
t  

where: M is the resultant external torque, J is the equivalent 
moment of inertia, D is the equivalent mechanical friction 
coefficient: 
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Fig. 12 Equivalent circuit of single-stage non-slack gear train 
 
 In the general case the mechanical friction coefficient D0 
defined for gear train (the coefficient determining a part of 
mechanical power converted into heat dissipation) depends 
on the mutual torque 00 MM  , i.e. )( 00 MfD  . Thus, if M0 

= 0 then also D0 = 0. In the simplest case the following 
dependency may be adopted: 
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where:  is the efficiency of gear train. 
 

 In more advanced terms, the respective components of 
friction coefficient may be determined as follows: 
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where positive values of torque and angular velocities 
correspond with directions of the arrows marked in Figs. 11 
and 12. 
 
Multipath rigid mechanical power transmission without 
clearances 
 The kinematic model of multipath mechanical power 
transmission is depicted in Fig. 13, whereas, the equivalent 
circuit, corresponding with the multipath mechanical power 
transmission without clearances, is shown in Fig. 14. 
 

 
 
Fig. 13. Kinematic model of multipath mechanical power transmission 
 
The equation of torques in accordance with the equivalent 
circuit (Fig. 14) is given as follows: 
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where: D1 = D11 + D12 + D13 + … + D1m and J1 = J11 + J12 + J13 
+ … + J1m, whereas D11 is equivalent mechanical friction 
coefficient defined for driving motor, J11 is equivalent 
moment of inertia of rotating masses concentrated at the 
rotor of driving motor as lumped mass (parameters omitted 
in Fig. 13). 

 
 
Fig. 14. Equivalent circuit of multipath mechanical power transmission 
without clearances 
 
Conclusions 

In the paper simple models of mechanical connections 
between the driving motor and the working mechanism are 
analyzed. The equivalent circuits, typical for electrical 
systems, are defined for the mechanical systems 
concerned. Particular attention is paid to the similarities 
between electrical and mechanical systems. Identifying 
these similarities is very helpful for electricians in finding a 
relevant interpretation of mechanical systems, which is 
particularly important in the case of professionals dealing 
with electromechanical energy converters or drive systems. 
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