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Abstract. In the analysis and design of galvanic corrosion protection systems the boundary element method (BEM) has been used most 
successfully, because of ease in the development of models, speed in the analysis and accuracy of the results. In this paper it is described the 
method of computation of current density field in bodies composed of materials of different conductivity and potential distribution on the boundary. 
The determination of current density distribution, its dependence on structure geometry is also considered. This enables us to apply adequate 
galvanic corrosion protecting system. 
 
Streszczenie. W analizie i projektowaniu systemów ochrony przed korozją metoda elementów brzegowych (MEB) ma zastosowanie w modelowaniu 
ze względu na szybkość i dokładność analizy wyników. W artykule opisano metodę obliczania gęstości prądu w materiałach o różnej przewodności 
oraz rozkład potencjału na brzegu. Wyznaczenie rozkładu gęstości prądu, jego zależność od geometrii struktury są znane, co pozwala nam na 
zastosowanie odpowiedniego systemu ochrony przed korozją galwaniczną. (Metoda elementów brzegowych w modelowaniu korozji 
galwanicznej w podziemnych strukturach) 
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Introduction 
The economical importance of galvanic corrosion 

causes that large amounts of capital and engineering time 
be invested in the design and construction of protection 
systems such as cathodic and anodic protection. 

Galvanic corrosion is the result of the electrochemical 
reaction between two dissimilar metals in electrochemical 
contact when they are in electrolyte. Cathodic protection is 
one of the more frequently used methods of corrosion 
prevention. 

In the analysis and design of galvanic corrosion 
protection systems the boundary element method (BEM) 
has been used most successfully [1], because of ease in 
the development of models, speed in the analysis and 
accuracy of the results [2]. 

The whole surface of the protected structure can be 
considered as equipotential and distribution of the current 
in the volume of the structure has not to be calculated, 
because the protected structures are made of various kinds 
well conducting metals (or various kinds of steel) which 
conductivity is much higher than surrounding electrolyte. In 
order to be able to compute a distribution of the cathodic 
polarization on protected structure a calculation of the 
distribution of the current flow in the structure is necessary. 
The individual components of composite material have 
different polarized potentials what makes a design process 
much more complicated. 

The distribution of the potential in homogeneous [3] and 
inhomogeneous [4] electrolyte between an anode and a 
cathode was investigated by some authors. The need for a 
BEM system which accounts for finite conductivities of 
protected structure is apparent. 

This paper describes a calculation of the polarized 
potential by boundary element method on protected 
structure composed of materials of different conductivities. 
It is assumed that the value of the electrolyte conductivity is 
comparable with those of composed materials. Some 
illustrative examples at the end also will be given. 

 
Numerical model of the galvanic corrosion cell 

Corrosion is the destruction of metals by interaction with 
environment. Material immersed in an electrolyte shell 
corrodes due to microscopic galvanic cells created on the 
material surface. In corrosion process there are two kinds 
of electrochemical reactions: the anodic and the cathodic 
reactions. At one surface can simultaneously occur both 

types of reactions [5]. The electrochemical potential 
between the anode and the cathode is the driving voltage 
source causing chemical reaction, and it is also the basic far 
cathodic protection. The most important cathodic reactions 
are: 
• evolution of H2 from acid, neutral or alkaline solution 

(1)        

(2)       

• reduction of dissolved oxygen in acid, neutral or alkaline 
solution 

(3)       

(4)       

• reduction of dissolved oxidizer in a redox reaction such as 
reduction of ferric to ferrous ions 

(5)    

The most important anodic reaction is oxidation of metal 
or alloy M liberating into solution a metal ion Mn+ and into 
the metal electrons ne-: 

(6)    
(7)    

 
Fig. 1. Schematic cathodic protection system with a impressed 
current i. Description of the symbols in a text 
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The tendency of a metal to liberate electrons, and to go 
as ions into solution in an electrolyte and thus to become 
corroded, is related to the potential of the metal measured 
with reference to some other elements of construction. The 
potentials developed by electrode materials can be found 
tabulated in textbooks and handbooks. The electrochemical 
potential difference between the anode and the cathode is 
the driving voltage source causing chemical reaction, and it 
is also the basis for cathodic protection.  

In analysis of the corrosion cells there are generally to 
do with two types of problems: with primary and secondary 
current density distribution calculations. In the first case the 
potential or current density on the boundary is prescribed 
and influence of nonlinearity caused by the relation 
between polarization and current density, as well as 
presence of concentration polarization is neglect. This type 
of analysis is usually the first step of the simulation. The 
secondary current density distribution in electrochemical 
cell is determined when, except of prescribed potentials, 
relation between polarization and current density is taken 
into account. In this publication only activation polarization 
is considered. 

The net applied cathodic current is described by well-
known Butler-Volmer equation [6] 

(8)    

where:  

(9)    

(10)   

i0 – exchange current density in ,  – transfer 

coefficient usually equal 0.5,  – number of electrons in 

electrode reaction, F – Faraday constant, T – temperature 
in [K], R – gas constant, i – current density on the surface,   
– overpotential on the given electrode in [V] 

(11)  

where: V1 is potential distribution on the corroding electrode 
and Eo is a potential of the electrode in equilibrium state, 
that is when anodic current is equal to the cathodic current 
and no net current i flows. Exact definitions of the above 
quantities together with adequate formulae can be found 
anywhere [7,8]. It is to point out, that above equations de-
scribe kinetics of the electrochemical reactions. 
 

Boundary integral model  
The aim of the analysis and modeling of cathodic 

protection system is to determine which parts of structure 
acts cathodically and which segments of structure acts 
anodically. The segment of a structure is said to be 
cathodically protected if in every point of this segment the 
applied potential is greater than potential difference that 
can exist on a metal surface caused by chemical reaction. 
Thus, the important quantity which must be calculated 
accurately for any successful cathodic protection scheme is 
the distribution of the potential and current density on the 
metal surface.  

In regions 1, 2 and e we have following partial 
differential equations, respectively: 

(12)   

(13)   

(14)   

where 1 and 2 are compound material regions and e is 
region of electrolyte. 

On boundaries 1e and 2e between compound material 
and electrolyte we have following Neuman’s boundary 
conditions given by relation (8) 

(15)   

(16)   

where n is the normal outward unit vector to the boundary. 
All potentials have to fulfill Neuman’s and Dirichlet’s 

boundary conditions on all boundaries. Dirichlet’s boundary 
conditions on boundaries 1e, 12 and 2e are given by 
relations [9]: 

(17)       for   

(18)       for   

(19)       for   

Continuity condition of the normal component of the 
current density vector on each boundary yields Dirichlet’s 
boundary conditions: 

(20)     on   

(21)     on   

(22)     on   

For homogeneous part 1 the equation (12) becomes the 
Laplace equation, and the boundary integral equation 
associated with it may be derived after twice integrating it by 
parts [10]. For each of equations (12), (13) and (14) we can 
derive appropriate boundary integral equation: 

(23)

  

(24)

  

(25)
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where: c1e = c1e(y) is a constant determined from the Cau-
chy's principal value integration of the Green's function 
singularity, y and x are the observation and integration 
points respectively, n1e  is a unit vector normal to the 
boundary and directed outside domain 1. One has to 
remember that when normal vector is directed in opposite 
direction following formulae has to be fulfilled: c2e = 1  c1e. 
Other constants are defined in similar way. Function G(y,x) 
is the free space Green's function of the Laplace equation. 
For two dimensional problems it has a value 

(26)   

To get final boundary integral equation relating only po-
tentials on the problem and interzonal boundaries we have 
to multiply equation (12) by 1, equation (13) by 2, equation 

(14) by e, to add them together and to utilize boundary 
conditions (17) - (22). In the resulting integral equation 
there are not partial normal derivatives of potentials on 
structure boundaries. This makes formulations of algebraic 
equation set easier and reduces of total number of these 
equations [11].  

(27)

 

In the above it was taken into consideration that the value of 
potential on a is equal Uapp and current density normal to 
the boundary s is equal zero. 

The boundary  = 1  s  a is discretized into boundary 
elements, and values of V and i are approximated in terms 
of interpolation functions and nodal values. By adopting 
standard procedure of the boundary element method 
[12,13] we obtain the following simultaneous equations: 

(28)   

The above equation is solved by using usual Newton-
Raphson iterative numerical procedure. 
 

An illustrative example 
As an illustrative example let us consider the distribution 

of the current density in two dimensions in the electrolyte 
and in conducting cathode composed of two different 
materials in situation depicted in fig. 2. The anode is 
assumed to be perfect conductor so distribution of the 
current inside it needs not to be calculated. The soil is 
simulated as rectangle and it is assumed to be sufficient 
large to have the current density parallel to the boundary. 
The conductivity of the soil is assumed e = 0.1 S and that 
of the cathode 1 = 1 S and 2 = 0.01 S, respectively. 

 

 
 
Fig. 2. Representation of the cell used to numerically simulate a 
secondary current distribution 
 

Potential of the electrode in equilibrium state for an iron is 
equal Eo = 0.8 V and is assumed to be the some for both 
materials. Cathodic electrode kinetic parameters for T = 
20 oC are taken from [11], table 3.2 and there are  

(29) ,   .  

 
 
Fig. 3. Potential distribution in volts along boundary 1 

 

 
 
Fig. 4. Current density distribution along boundary 1 

 
It is assumed that only activation polarization is present 

on the cathodic surface and contraction polarization effects 
are discarded. For these data the equation (28) has been 
solved. The potential and current density normal to the 
boundary along perimeter of the cathode is shown on Fig. 3 
and Fig. 4, respectively. 
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The applied voltage Uapp = 1 V. The total current supplied 
to the structure can be computed as 

(30)   

For our example I = 0.1943 mA.  
Extension of the above procedure to taken into account 
concentration polarization is also possible. 
 

Conclusions 
In the case when protected cathode is made of a 

composed material, that is when the structure consist of 
more then one material of different conductivity and electro-
chemical properties, the presented procedure is applicable 
without changes. The potential along boundaries between 
different mediums are to be defined and additional 
boundary conditions have to be written. The only problem 
which can be met is the convergence problem in Newton-
Raphson iterative procedure, caused by highly non-linear 
dependence between current density an polarization. 
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