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Abstract. The paper presents a new approach to modelling of binary random sequences, where versatile models that reflect properties of 
these sequences are revealed and discussed. In particular, the analysis covers the problems of stationarity and ergodicity of random 
sequences, the forms of their multi-dimensional distributions of probability and the essence of their isomorphism. The theoretical analyzes 
have been verified by measuring experiments. 
 
Streszczenie. W artykule przedstawiono nowe podejście do modelowania losowych ciągów binarnych. Wszechstronnie przeanalizowano problemy 
ich stacjonarności i ergodyczności, postaci wielowymiarowych rozkładów prawdopodobieństw i istotę izomorfizmu. Analizy teoretyczne zostały 
potwierdzone doświadczalnie. (Analizy i pomiary sprzętowo generowanych losowych ciągów binarnych modelowanych jako łańcuchy 
Markowa.) 
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Introduction 
 Investigations and evaluation of physically generated 
random binary sequences can be carried out by means of 
various methods. 

The first approach that is rather historical and nowadays 
is commonly put in question is the method of investigations 
by means of a set of statistic tests [1]. The method assumes 
that the sample sequence is examined a posteriori, i.e. 
upon having the sequence generated with no consideration 
to the mechanism of generation, thus the properties and 
parameters of the sequence are a priori unknown. The 
method is merely sufficient to check whether of not the 
examined sequence meet requirements of the specific 
statistical test.  

The second method that is described in the associated 
paper [2] consists in verification how much the sample 
sequence subjects to the random pattern of distribution, 
where the verification is carried out on the basis of the 
expected entropy that is theoretically determined 
beforehand and the sample entropy calculated from 
practical measurements. The method makes it possible to a 
priori predict the expected entropy and then calculate the 
sample entropy on the basis of a posteriori measurements. 
Next, the both entropies are mutually compared to find out 
whether the examined sample sequence meets the entropy 
criterion of randomness.  

The third approach, the most recent one and considered 
as the most reliable is the method where the primary 
statistical properties of the sequence are proved prior to its 
generation since these properties result from analysis of the 
mechanism that is applied to generation of that sequence. 
Such sequences are referred to as implementations with 
the a priori complete statistical information, but with 
unknown and unpredictable values of subsequent elements 
within a sequence made up of zeros and ones. Obviously, 
such properties can be also confirmed a posteriori by 
means of statistical analysis and should be in line with the 
assumed statistics according to the Laws of Large 
Numbers.  

In a general case the interest is focused on all significant 
properties and criteria for randomness of the sequence 
since such properties and criteria are explicitly entailed by 
primary mechanisms applied to the sequence generation. 
The analysis of those properties is only possible when 
various branches of mathematics are applied, i.e. – theory 
of probability, theory of information and theory of dynamical 
systems.  

Firstly, from the viewpoint of the theory of probability, 
the basic criteria of randomness are stationarity and 
ergodicity as well as the stochastic equivalence of 
probability distributions.  

Secondly, in terms of the theory of information and theory 
of dynamical systems, the key criterion is equivalence of 
entropy for various sequences and their mutual 
isomorphism in the measure-theoretic sense. Since entropy 
is the function of probabilities, the equivalence of entropy is 
a secondary criterion. However in practice, in particular for 
multi-dimensional random variables, it is more convenient to 
deal with the single-dimensional entropy.  

These studies assume that random binary sequences are 
generated with use of a hardware generator with an 
avalanche diode as a source of randomness. The analyses 
shall be based on the model of these sequences where the 
actual sequences shall be considered as binary Markov 
chains of the first order (further referred to as Markov 
chains). Such an assumption results from the fact that the 
adopted model is a sufficiently accurate reproduction of 
properties and parameters for random sequences supplied 
by the aforementioned generator, the analysis of such 
sequences is pretty easily and results of the analysis can be 
construed in a uncomplicated manner.  

Stationarity and ergodicity 
Let us initially consider stationarity and ergodicity of a 

random binary sequence being modeled as a Markov chain. 
Let us also assume that the sequence has the bias s and 
the correlation K, whilst the sequence elements are 
designated by means of subsequent numbers n, n+1, etc. If 
the bias and correlations are constant and independent on 
the element number, the sequence is referred to as 
homogeneous.  

Such a chain is described by conditional probabilities 
P(X|Y), that can be summarized into matrix of transition 
probabilities (simply – transition matrix) as  
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If for all P(X|Y) the conditions 0  P(X|Y)  1 and P(0|0) + 

P(1|0) = P(0|1) + P(1|1) = 1 are fulfilled, the matrix M is 
referred to as the stochastic matrix.  

The probabilities for subsequent elements of the 
sequence can be described as the total probabilities 
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(2)  P(0)(n+1) = P(0)(n) P(0|0) + P(1)(n) P(0|1)  
 

and 
 

(3)  P(1)(n+1) = P(0)(n) P(1|0) + P(1)(n) P(1|1)  
 

Under the assumption that the vectors of probabilities P(0)(n) 
and P(1)(n) are defined as the matrix P(n) = [ P(0)(n) P(1)(n) ], 
the following notation is true 
 

(4)    P(n+1) = P(n) M ,  
 

and for subsequent m elements 
 

(5)    P(n+m) = P(n) M
m . 

 

In the general case the notation leads to the Chapman-
Kolmogorov equation in its matrix version 
 

(6)  P(n+m) = P(n+i+j) = P(n) M
m = P(n) M

i+j = P(n) M
i
 M

j .  
 

Then the question arises what the form of the Mn matrix 
should be if the matrix M is defined as in (1). The literature 
references provide various forms of the Mn matrix, usually 
with really sophisticated and useless forms. By use of the 
spectral theory of matrices one can bring the Mn matrix to 
the spectral matrix in form [3] 
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The Mn matrix is also a stochastic one and has two single 
characteristic roots that make up its spectrum. The first root 
1 = 1 referred to as the spectral radius, is equal to 1, thus it 
formally indicates the ergodice and irreducible properties of 
the matrix. The second root 2 = 1 – P(0|1) – P(1|0) < 1 shows 
of the non-cyclic property of the matrix. 

The Mn matrix meets the convergence provision 
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Due to the foregoing property the M is referred to as the 
ergodic matrix with its (0) and (0) elements that are called 
ergodic probabilities whilst the Markov chain itself is an 
ergodic chain, i.e. demonstrating the ergodic property. 

Let us ask the question what the vector of probabilities 
must be to satisfy the equation  
 

(11)  P  = P M . 
 

It turns out that there is only one P vector that fits the 
foregoing equation. The vector is  
 

(12)  P = [ (0)  (1) ]   
 

and is referred to as the stationary distribution whilst its 
terms are equal to terms in rows of the ergodic matrix M, 
i.e. the (0) and (1) ergodic probabilities.  

By substitution of the relationship (7) to the equation (5) 
the following provision is fulfilled for any n and m 
 

(13)   P(n+m) = P(n) M
m = 

=  [ P(0)(n+m)   P(1)(n+m) ] = 
= [ (0) + ( P(0)(n) – (0) ) Km    (1) + ( P(1)(n) – (1) ) Km ] . 

If P(0)(n) = (0) and P(1)(n) = (1) the P vector immediately 
adopts the form (12). But anyway, even if P(0)(n)  (0) and 
P(1)(n)  (1), the P vector is quickly brought to the form (12) 
due to the Km factor. It is easy to notice that whenever the P 

adopts the form (12), the for shall be then reproduced for 
subsequent elements in the unaltered form, because  
 

(14) P(m) = [ (0)  (1) ] Mm = [ (0)  (1) ] = P  
 

for any m. It is why the Markov chain can be referred to as 
the stationary chain i.e. demonstrating the stationary 
property.  

It can be also noticed that the stationary property is the 
secondary feature that can be derived from ergodicity since 
each ergodic sequence is also a stationary one, which also 
results from the foregoing analysis.  

Such stationary properties is only the stationarity in 
weak-sense. In the subsequent part of this paper also the 
stationarity in strict-sense shall be the subject of further 
deliberations.  
Also the conditions for ergodicity can be considered in the 
more detailed sense since other interesting understanding 
of ergodicity also exist, i.e. geometric ergodicity and uniform 
ergodicity. 

Each homogeneous, irreducible and non-cyclic Markov 
chain is ergodic in the geometric sense when the following 
provision is fulfilled  

(15) || P(n) – P || tv = |)()(|
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where 
||  || tv is the measure of the variation distance in the sense 
of an extremum for the total variation norm, where the dis-
tance is determined between the probabilistic vector P(n) for 
the nth element and the stationary probabilistic vector of P;  
C(0)   is the constant that depends on the vector of initial 
conditions, i.e. the probabilistic vector of P(0);  
 < 1 is the constant that corresponds to the second 
characteristic root of the matrix M, i.e.  = 2 = 1 – P(0|1) – 
P(1|0) = K < 1 . 
Substitution of the probabilistic vector for the n element (13) 
in the form of  
 

(16)   P(n) = P(0) M
n =  

   = [ P(0)(n)   P(1)(n) ] = 
= [ (0) + ( P(0)(0) – (0) ) Kn    (1) + ( P(1)(0) – (1) ) Kn ] , 

 

to (15) leads to the following equation  
 

(17)   || P(n) – P || tv =  

= nKPP }|)1()1(||)0()0(|{
2

1
)0()0(   C(0) n , 

where C(0) = 1/2 { | P(0)(0) – (0) | + | P(1)(0) – (1) | }  1 and 
n = Kn .  
 

As one can see, the Markov chain in question is ergodic 
in the geometric sense.  

However, the foregoing provision also demonstrate that 
the Markov chain under consideration is not uniformly 
ergodic since it fails to fulfill the following, more strict 
provision that requires from the constant C <  to be 
independent on initial conditions  
 

(18)  || Pn – P || tv  C n .  
 

However, it is possible to find out that the uniform 
ergodicity is characteristic for stationary Markov chains 
since for P(0)(n) = (0) and P(1)(n) = (1) the provision  
|| Pn – P || tv = 0 is fulfilled.  

Obviously, for the both cases the convergence exists for 
the function of the number of elements  
 

(19)   lim n || Pn – P || tv = 0,  
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since C  1, (X)  1/2, the m = Km factor very quickly brings 
the limit to zero. Sometimes the foregoing convergence 
property is understood as the general term of ergodicity.  

The problem of ergodicity is considered not only from the 
viewpoint of the ergodic properties themselves but also as 
the provision for other properties to come true, e.g. the 
convergence of the Markov chain to the normal density (the 
central limit theorem (CLT)) [4]. It turns out that such a 
convergence takes place when the chain demonstrates the 
property of geometric ergodicity [4]. Beside proving the fact 
of convergence it is also possible to calculate the expected 
value E(n) and the variance V(n) for the Gaussian 
distribution of the random variable n = k / n, and these 
distribution parameters depend on the ergodic probabilities 
(0) and (1), the K correlation and the number of elements 
n of the sequence. For the first approximation these 
parameters are the following [3] 

(20)  E(n) = 
n

P )0()0(
)0( )0( 


K

K n


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1

1
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(21)   V(n)  
n

)1()0( 
K

K




1

1
 , 

where k stands for the random variable of the binary value 
0, k the number of zeros in the sample, n the size of the 
sample and n = k / n.  

It is easily to see that for a stationary Markov chain, i.e. 
P(0)(0) = (0) the mathematical expectation is immediately 
E(n) = (0) whilst the variance V(n) has the property of 
overdispersion [2]. Regardless the fact that it is the simplest 
case of a one-dimensional random variable the analysis of 
the case is really sophisticated and extends scope of this 
paper. For multi-dimensional random variables any 
satisfactory analytic solutions are actually non existent and 
the expected values E(X1, ..., XN) and variances V(X1, ..., XN) 
can be calculated exclusively by means of estimation 
methods.  
 To recapitulate the foregoing, the sequence under 
consideration shall demonstrate all the foregoing properties 
if such a sequence is defined by the stochastic matrix M in 
the form (1). Obviously, it is infeasible to verify the foregoing 
analyses by experiments since no probability can be 
measured a priori and only properties of implementations 
are measurable as relative frequencies [2] that are 
inapplicable for direct verification whether the foregoing 
analyses are true. However, the correctness of them can be 
verified on the indirect way. Initially – by measurements of 
the bias s and corellation K parameters and then by 
providing the proof that the examined sequence 
corresponds to the model of the first order Markov chain. 
The secondary proof is possible by experimental 
confirmation of stationary and ergodic properties of the 
chain samples.  

Stochastic equivalence of probability distributions 
Determination of probability distribution is a sophisticated 

task, in particular for multi-dimensional random variables. 
Although it is not difficult to find out distribution for 
independent random variables since they are characterized 
exclusively by bias and not encumbered by correlation, the 
real random variables that are used for modeling of actual 
random sequences are never independent in practice and 
their mutual correlations must be also taken into 
consideration. The difficulty results from the need to find out 
joint probabilities for N–dimensional random variables from 
the defining relationship  
 

(24) P(X 1, ..., X N) = P(X N | X 1, ..., X N–1) P(X 1, ..., X N–1) . 
 

For this case, even the probabilities for (N-1)–dimensional 
random variables P(X 1, ..., X N–1) are known, no information 
is usually available for the conditional probabilities   
P(X N | X 1, ..., X N –1).  

The problem can be simplified when it is reduced to 
determination of distributions for multi-dimensional random 
variables that are modeled as first-order Markov chains. Let 
us benefit from the Markov property  
 

(25)  P(XN | X1, ..., XN–1) = P(XN | XN–1) .  
 

Such an approach makes it possible to rewrite the 
relationship (24) in the form of a recurrence formula  
 

(26) P(X1, ..., XN) = P(XN | XN–1) P(XN–1 | XN–2) ... P(X2 | X1) P(X1). 
 

One to have also to keep on mind that individual terms 
within the formula (26) are known since they are entries of 
the stochastic matrix  
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Calculation of probabilities from the relationship (26) is 
simple, although quite burdensome [3]. The calculations 
lead to really vast polynomials but they can be substantially 
simplified under the assumptions that s << 1 and K << 1. By 
rejection of entries with significantly less values and with 
consideration to the Kolmogorov axiom the following 
equation can be achieved 

(28)   




12

0,...,1

N

NXX

P(X1, …, XN) = 1 ,   

that is correct for N–dimensional distributions: 
 
A. one-dimensional distribution 
 

P(0) = 1/2 – s  
P(1) = 1/2 + s  

 

B. two- dimensional distribution 
 

P(0,0)  1/4 – s + 1/4 K = 1/4 (1 – 4s + K) 
P(0,1)  1/4       – 1/4 K = 1/4 (1         – K) 
P(1,0)  1/4       – 1/4 K = 1/4 (1         – K) 
P(1,1)  1/4 + s + 1/4 K = 1/4 (1 + 4s + K) 

 

C. three-dimensional distribution 
 

P(0,0,0)  1/8 – 3/4 s + 1/4 K = 1/8 (1 – 6 s + 2 K) 
P(0,0,1)  1/8 – 1/4 s   = 1/8 (1 – 2 s         ) 
P(0,1,0)  1/8 – 1/4 s – 1/4 K = 1/8 (1 – 2 s – 2 K) 
P(0,1,1)  1/8 + 1/4 s   = 1/8 (1 + 2 s         ) 
P(1,0,0)  1/8 – 1/4 s   = 1/8 (1 – 2 s         ) 
P(1,0,1)  1/8 + 1/4 s – 1/4 K = 1/8 (1 + 2 s – 2 K) 
P(1,1,0)  1/8 + 1/4 s   = 1/8 (1 + 2 s         ) 
P(1,1,1)  1/8 + 3/4 s + 1/4 K = 1/8 (1 + 6 s + 2 K) 

 

D. four-dimensional distribution 
 

P(0,0,0,0)   1/16 – 1/2 s + 3/16 K = 1/16 (1 – 8 s + 3 K) 
P(0,0,0,1)   1/16 – 1/4 s + 1/16 K = 1/16 (1 – 4 s +   K) 
P(0,0,1,0)   1/16 – 1/4 s – 1/16 K = 1/16 (1 – 4 s –   K) 
P(0,0,1,1)   1/16             + 1/16 K = 1/16 (1         +   K) 
P(0,1,0,0)   1/16 – 1/4 s – 1/16 K = 1/16 (1 – 4 s –   K) 
P(0,1,0,1)   1/16            – 3/16 K = 1/16 (1         – 3 K) 
P(0,1,1,0)   1/16            – 1/16 K = 1/16 (1          –   K) 
P(0,1,1,1)   1/16 + 1/4 s + 1/16 K = 1/16 (1 + 4 s +  K) 
P(1,0,0,0)   1/16 – 1/4 s + 1/16 K = 1/16 (1 – 4 s +   K) 
P(1,0,0,1)   1/16            – 1/16 K = 1/16 (1           –   K) 
P(1,0,1,0)   1/16            – 3/16 K = 1/16 (1          – 3 K) 
P(1,0,1,1)   1/16 + 1/4 s – 1/16 K = 1/16 (1 + 4 s –   K) 
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P(1,1,0,0)   1/16             + 1/16 K = 1/16 (1          +   K) 
P(1,1,0,1)   1/16 + 1/4 s – 1/16 K = 1/16 (1 + 4 s  –   K) 
P(1,1,1,0)   1/16 + 1/4 s + 1/16 K = 1/16 (1 + 4 s +   K) 
P(1,1,1,1)   1/16 + 1/2 s + 3/16 K = 1/16 (1 + 8 s + 3 K) 

 
How is has already been noted, determination of 

distributions for random variables of higher rank is really 
burdensome. Let us then ask a question whether any 
recurrent rule can be derived from the foregoing 
relationships to enable determination of probability 
distributions for random variables of finite rank but for any, 
however finite dimension of N? When to consider right-hand 
sides of all relationships one can spot that beside the 1/2N 
factor the equations comprise sums of biases and 
correlations with the values that depend on mutual 
arrangement of zeros and ones in the structure of the 
random variable (X1, ..., XN).  

The detailed analysis of structures for all variables makes 
it possible to find out that the following recurrence formula is 
valid for any N–dimensional random variable 
 

(29)   P(X1, ..., XN) =  
= 1/2N { 1 + 2s [ L(1) – L(0) ] + 

+ K [ L(0,0) + L(1,1) – L(0,1) – L(1,0) ] } , 
where 
L(1) – total number of entries with the value of (1),  
L(0) – total number of entries with the value of (0),  
L(0,0) – total number of pairs made up by adjacent entries 
with the same values of (0,0),  
L(1,1) – total number of pairs made up by adjacent entries 
with the same values of (1,1),  
L(0,1) – total number of pairs made up by adjacent entries 
with the opposite values, i.e. (0,1),  
L(1,0) – total number of pairs made up by adjacent entries 
with the opposite values, i.e. (1,0).  
 

It is easily to see that the probabilities described by the 
relationship (29) fulfill the Kolmogorov axiom (28) by the 
nature of matters.  

Let us recall that the simplified formula for entropy [2] for 

probabilities defined as P(X1, ..., XN) = 1/2N  + ),...,( 1 NXX and 

),...,( 1 NXX << 1 is following  
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The transformation of (29) to the form  
 

(31)   P(X1, ..., XN) =  
= 1/2N  + 1/2N { 2s [ L(1) – L(0) ] + 

+ [ L(0,0) + L(1,1) – L(0,1) – L(1,0) ] } = 

= 1/2N + ),...,( 1 NXX ,  

and the substitution 

),...,( 1 NXX =1/2N{2s [L(1)–L(0)]+[L(0,0)+L(1,1)–L(0,1)–L(1,0)]} 

to (30) with simultaneous discarding of negligible elements 
with their substantially less values leads to the same results 
of each N as in case when the relationship [2] is applied 

(32)  H(X1, …, XN)  1 – 
2ln2

1
(4s2 + 

N

N 1
K2 ) 

But anyway, calculations of that type are really 
burdensome. However, it is possible to notice that various 

approaches may lead to the same results and correctness 
of these results can be additionally verified by 
measurements [2].  
 

In practice, the random binary sequences generated with 
use of hardware means demonstrate poor properties of 
randomness that are exhibited by large values of bias 
s = 510–3 and correlation K = 510–3. However, it is 
demonstrated in [2] that such large values can be reduced 
on a simple way.  

Upon generation of M independent random binary 
sequences and then these sequences are XORed, the bias 
and correlation for the resulting sequence shall decrease in 
the proportion to s(M) = 1/2 (2s)M and K(M) = KM, 
respectively.  

The resulting sequence inherits all properties from the 
one that is modeled by means of a Markov chain of the first 
order and only the corresponding parameters subject to 
changes and become s(M) << s and K(M) << K.  

Hence, the probabilities for any N–dimensional random 
variable can be rewritten in the form of the recurrence 
relationship  
 

(33)   P(X1, ..., XN) =  
 = 1/2N { 1 + (–1)M+1 (2s)M [L(1) – L(0) ] + 

+ KM [ L(0,0) + L(1,1) – L(0,1) – L(1,0) ] } , 
 

where L(X) and L(X,Y) have the same meanings as in case 
of the (29).  

When are known forms of probability distributions for 
random variables with a whichever dimension of N, where 
distributions depend only on bias and correlation and are 
irrelevant to other factors, is true the thesis on the 
stationarity in the strict-sense, i.e. invariability of all 
probability distributions with the finite dimensions.  

The experiments 
Let us try to confirm correctness of the foregoing 

analyzes by several experiments.  
For needs of our experiments have been used a hardwa-

re generator to produce a sample of the size n = 1 GB. Let 
us suppose that the samples of random binary sequences 
are available and these samples are modeled as a Markov 
chain with the bias s = 1/256 and the correlation K = 1/128.  

It is then possible to investigate distributions of random 
variables with any dimension of N but with consideration to 
the fact that for N the probabilities P(X 1, ..., XN) represent 
interdependence between all random variables and such a 
representation is more exhaustive, in contrary to e.g. one-
dimensional distribution that takes account only of the bias.  

However, the dimension of the random variable must not 
be too high since the analysis of 2N points for the 
distribution may prove too difficult. For instance, when N = 8 
the number of points is only 256, but for N = 16 as much as 
65536 and the analysis of such huge number of points can 
be carried out exclusively by means of numerical methods. 
Moreover, for large dimensions of random variable the 
accuracy for measurements of relative frequencies is 
worsened.  

Let us then consider how the size of a sample sequence 
affects accuracy of measurements for relative frequencies. 
Obviously, the analysis can be based on the variance and 
the standard deviation but these measures are not practi-
cable. It is much more convenient to employ the module of 
the mean relative deviation from the expected value.  

For the sample sequence with the size of n elements and 
taken for the N–dimensional random variable k the said 
measure is defined by the theoretical relationship [3] 
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(34) | av (N) | = E(| k – E (k) |) N / n =
n

N
N

N




12

)1/2 (1
, 

but for the practice of measurements  

(35) | av (N) | = 1/2N 




12

0,...,1

N

NXX

| 1/2N – n(X1, ..., XN) N / n | . 

For N = 8 and n = 1 GB we have | av (N=8) |  (16 (n = 1 
GB))–1/2 = 1.54·10–6, but for N = 16 and n = 1 GB the 
measure is |av (N=16)|  (2048  (n = 1 GB))–1/2 = 1.36·10–7.  

The expected relative frequencies shall amount to 1/2N=8 
= 1/256 = 3.90625·10–3 and 1/2N=16 = 1/65536  
1.52588·10–5. As one can see it is possible to expect 
accuracies in the sense |av (N)| / 1/2N respectively equal to 
3.9·10–4 and 8.9·10–3. Since the assumption was made that 
s = 3.90625·10–3 and K = 7.8125·10–3 the foregoing 
accuracy would be definitely too low for N = 16. Thus, to 
investigate 16-dimensional distributions with sufficient 
accuracy it would be necessary to generate samples with 
the size of many tens of GB. The generation process itself 
would take a long time and the calculations would be also 
extremely time-consuming. Moreover, the practice of 
measurements confirms that 16-dimensional distributions 
are merely a recurrence extension of 8-bit distributions and 
bring no important, additional information.  

Thus, it is sufficient to find out relative frequencies  
n(X1, ..., X8) N / n for all 8–element subsequences 
incorporated into a sample with the size of n = 1 GB (1000 · 
8 · 1048576 bits = 8388608000 bits).  
 

Table 1. Relative frequencies n(X1, ..., XN) N / n for N = 8 and the 
sample with the size of n = 1 GB  
 

0: 0.0038793 |     1: 0.0038847 |     2: 0.0038191 |     3: 0.0039392 |    4: 0.0038216 |     5: 0.0038198 |    6: 0.0038813 |     7: 0.0039968 
8: 0.0038196 |     9: 0.0038214 |   10: 0.0037624 |   11: 0.0038808 |  12: 0.0038779 |   13: 0.0038790 |   14: 0.0039396 |   15: 0.0040615 

16: 0.0038174 |   17: 0.0038205 |   18: 0.0037623 |   19: 0.0038778 |  20: 0.0037598 |   21: 0.0037592 |   22: 0.0038167 |   23: 0.0039367 
24: 0.0038792 |   25: 0.0038791 |   26: 0.0038185 |   27: 0.0039342 |  28: 0.0039392 |   29: 0.0039362 |   30: 0.0039970 |   31: 0.0041168 
32: 0.0038212 |   33: 0.0038225 |   34: 0.0037607 |   35: 0.0038790 |  36: 0.0037619 |   37: 0.0037605 |   38: 0.0038183 |   39: 0.0039375 
40: 0.0037593 |   41: 0.0037604 |   42: 0.0037016 |   43: 0.0038149 |  44: 0.0038218 |   45: 0.0038121 |   46: 0.0038739 |   47: 0.0039944 
48: 0.0038800 |   49: 0.0038789 |   50: 0.0038158 |   51: 0.0039384 |  52: 0.0038194 |   53: 0.0038167 |   54: 0.0038756 |   55: 0.0039962 
56: 0.0039400 |   57: 0.0039359 |   58: 0.0038715 |   59: 0.0039952 |  60: 0.0039948 |   61: 0.0039941 |   62: 0.0040539 |   63: 0.0041779 
64: 0.0038191 |   65: 0.0038228 |   66: 0.0037615 |   67: 0.0038771 |  68: 0.0037632 |   69: 0.0037631 |   70: 0.0038172 |   71: 0.0039354 
72: 0.0037600 |   73: 0.0037573 |   74: 0.0036976 |   75: 0.0038112 |  76: 0.0038177 |   77: 0.0038139 |   78: 0.0038757 |   79: 0.0039959 
80: 0.0037605 |   81: 0.0037588 |   82: 0.0036967 |   83: 0.0038132 |  84: 0.0036954 |   85: 0.0036903 |   86: 0.0037515 |   87: 0.0038681 
88: 0.0038206 |   89: 0.0038146 |   90: 0.0037522 |   91: 0.0038737 |  92: 0.0038751 |   93: 0.0038714 |   94: 0.0039334 |   95: 0.0040535 
96: 0.0038785 |   97: 0.0038799 |   98: 0.0038196 |   99: 0.0039349 | 100: 0.0038221| 101: 0.0038196 | 102: 0.0038758 | 103: 0.0039923 

104: 0.0038202 | 105: 0.0038140 | 106: 0.0037528 | 107: 0.0038720 | 108: 0.0038707 | 109: 0.0038736 | 110: 0.0039342 | 111: 0.0040523 
112: 0.0039397 | 113: 0.0039355 | 114: 0.0038769 | 115: 0.0039929 | 116: 0.0038770 | 117: 0.0038697 | 118: 0.0039341 | 119: 0.0040518 
120: 0.0039946 | 121: 0.0039963 | 122: 0.0039306 | 123: 0.0040520 | 124: 0.0040596 | 125: 0.0040520 | 126: 0.0041157 | 127: 0.0042361 
128: 0.0038832 | 129: 0.0038824 | 130: 0.0038187 | 131: 0.0039400 | 132: 0.0038238 | 133: 0.0038207 | 134: 0.0038787 | 135: 0.0040013 
136: 0.0038203 | 137: 0.0038215 | 138: 0.0037580 | 139: 0.0038758 | 140: 0.0038818 | 141: 0.0038753 | 142: 0.0039379 | 143: 0.0040570 
144: 0.0038199 | 145: 0.0038179 | 146: 0.0037576 | 147: 0.0038713 | 148: 0.0037591 | 149: 0.0037552 | 150: 0.0038189 | 151: 0.0039339 
152: 0.0038788 | 153: 0.0038791 | 154: 0.0038138 | 155: 0.0039331 | 156: 0.0039389 | 157: 0.0039338 | 158: 0.0039922 | 159: 0.0041161 
160: 0.0038204 | 161: 0.0038196 | 162: 0.0037611 | 163: 0.0038778 | 164: 0.0037584 | 165: 0.0037549 | 166: 0.0038144 | 167: 0.0039318 
168: 0.0037598 | 169: 0.0037560 | 170: 0.0036931 | 171: 0.0038123 | 172: 0.0038135 | 173: 0.0038101 | 174: 0.0038732 | 175: 0.0039899 
176: 0.0038781 | 177: 0.0038755 | 178: 0.0038145 | 179: 0.0039340 | 180: 0.0038148 | 181: 0.0038086 | 182: 0.0038688 | 183: 0.0039893 
184: 0.0039370 | 185: 0.0039308 | 186: 0.0038688 | 187: 0.0039873 | 188: 0.0039960 | 189: 0.0039869 | 190: 0.0040521 | 191: 0.0041722 
192: 0.0039369 | 193: 0.0039423 | 194: 0.0038807 | 195: 0.0039966 | 196: 0.0038781 | 197: 0.0038762 | 198: 0.0039348 | 199: 0.0040605 
200: 0.0038762 | 201: 0.0038750 | 202: 0.0038119 | 203: 0.0039311 | 204: 0.0039375 | 205: 0.0039347 | 206: 0.0039991 | 207: 0.0041171 
208: 0.0038797 | 209: 0.0038787 | 210: 0.0038179 | 211: 0.0039346 | 212: 0.0038116 | 213: 0.0038082 | 214: 0.0038686 | 215: 0.0039935 
216: 0.0039372 | 217: 0.0039373 | 218: 0.0038682 | 219: 0.0039930 | 220: 0.0039952 | 221: 0.0039894 | 222: 0.0040530 | 223: 0.0041758 
224: 0.0039969 | 225: 0.0039990 | 226: 0.0039356 | 227: 0.0040584 | 228: 0.0039359 | 229: 0.0039333 | 230: 0.0039912 | 231: 0.0041151 
232: 0.0039346 | 233: 0.0039323 | 234: 0.0038697 | 235: 0.0039938 | 236: 0.0039944 | 237: 0.0039883 | 238: 0.0040515 | 239: 0.0041705 
240: 0.0040575 | 241: 0.0040604 | 242: 0.0039957 | 243: 0.0041194 | 244: 0.0039942 | 245: 0.0039921 | 246: 0.0040480 | 247: 0.0041721 
248: 0.0041181 | 249: 0.0041144 | 250: 0.0040497 | 251: 0.0041727 | 252: 0.0041774 | 253: 0.0041779 | 254: 0.0042343 | 255: 0.0043646 

 

Form – (X1, ..., X8)DECIMAL : relative frequency for (X1, ..., X8) 
 

Let us now estimate probabilities for several selected, 
characteristic random variables and compare them against 
the already measured relative frequencies. The process 
shall be carried out for the assumed values of bias s = 1/256 
and correlation K = 1/128.  
 

For the maximum excess of zeros over ones and the 
maximum correlation between the sequence of zeros the 
probability is calculated as  
 

(36)   P(00000000BIN) = 
= 1/256 { 1 + 2 (s = 1/256) [ L(1) – L(0) = –8 ] +  

+ (K = 1/128) [ L(0,0) + L(1,1) – L(0,1) – L(1,0) = +7 ] } =  
= 0.0038757  

– relative frequency (0DEC) = 0.0038793,  
– relative difference between the probability and the relative 
frequency –0.093% 
 

For the maximum excess of ones over zeros and the 
maximum correlation between the sequence of ones the 
probability is calculated as  
 

(37)   P(11111111BIN) = 
= 1/256 { 1 + 2 (s = 1/256) [ L(1) – L(0) = +8 ] +  

+ (K = 1/128) [ L(0,0) + L(1,1) – L(0,1) – L(1,0) = +7 ] } =  
= 0.0043640   

– relative frequency (255DEC) = 0.0043646,  
– relative difference between the probability and the relative 
frequency –0.014%.  
 

For the equality between (1) and (0) and the minimum 
correlation between the alternated zeros and ones 
probability amounts to  
 

(38)  P(01010101BIN) = P(10101010BIN) =  
= 1/256 { 1 + 2 (s = 41/256) [ L(1) – L(0) = 0 ] +  

+ (K = 1/128) [ L(0,0) + L(1,1) – L(0,1) – L(1,0) = –7 ] } =  
= 0.0036926   

– relative frequency (85DEC) = 0.0036903, 
– relative frequency (170DEC) = 0.0036931,  
– relative difference between the probability and the relative 
frequency is respectively +0.07% and –0.0054%.  
 

The foregoing estimations demonstrate that the relative 
differences between the calculated probability values and 
the measured values of relative frequencies are really low 
and never exceed 0.1%. 

Let us also check the sample entropy and compare it 
against the expected entropy. Sample entropy can be 
calculated from the following defining relationship [2]  
 

(39)   HR(X1, ..., XN | n) =  

= – 




12

0,...,1

 1
N

NXX
N

(n(X1, ..., XN) N / n) log2 (n(X1, ..., XN) N / n) , 

where for N = 8 and n = 1 GB the result is HR(X1, ..., X8 | n = 
1 GB) = 1 – 8.38·10–5.  
Practically equal result can be obtained from the simplified 
formula for entropy [2] 
 

(40)  HR(X1, ..., XN)   

 1 – 
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NXX
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N
[ 1/2N – n(X1, ..., XN) N / n ]2 . 

Let us check where such values appeared from. One has to 
keep in mind that the formula for entropy is the following [2] 
 

(41)   HS(X1, ..., XN | n)   

 1 – 
2ln2

1
(

n

NN )1/2(12 
(1 + 2K) + 4s2 + 

N

N 1
K2 ) .  

By substitution of the aforementioned values, i.e. n = 1 GB, 
s = 1/256 and K = 1/128 the final result for N = 8 is HS(X1, ..., 
X8 | n = 1 GB) = 1 – 2.22·10–8 – 4.40·10–5 – 7/8 · 4.40·10–5 = 
1 – 8.25·10–5. It is the value that is very close to the figure 
for sample entropy. It can also be seen that for n = 1 GB 
and N = 8 the value of masking component is relatively 
insignificant and negligible M(N, n) = 2N (1 – 1/2N) / n = 
2.22·10–8. 

Let us then investigate samples of the random 
sequences after the XOR operation. Let the bias is s = 
1/256 and the correlation K = 1/128, M = 8. Hence s(M) = 
1/2 (2s)M = 6.94·10–18 and K(M) = KM = 1,39·10–17 
respectively. Obviously, these values are so low that in 
practice they are not identifiable when the relative 
frequencies are measure. For comparison of results from 
examination of a sample with the size n = 1 GB let us then 
investigate a sample with the size 10 times less, i.e. n = 100 
MB (100 · 8 · 1048576 bits = 838860800 bits).  
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Table 2. Relative frequencies n(X1, ..., XN) N / n for N = 8 and the 
sample with the size of n = 100 MB  
 

0: 0.0039065 |     1: 0.0038929 |    2: 0.0039251  |     3: 0.0039051 |     4: 0.0039048 |     5: 0.0039036 |     6: 0.0039008 |    7: 0.0039002 
8: 0.0039052 |     9: 0.0039061 |  10: 0.0039109  |   11: 0.0039079 |   12: 0.0039075 |   13: 0.0039115 |   14: 0.0039111 |   15: 0.0039023 
16: 0.0039041 |   17: 0.0039089 |  18: 0.0039106  |   19: 0.0039134 |   20: 0.0039050 |   21: 0.0039008 |   22: 0.0039063 |   23: 0.0039082 
24: 0.0038973 |   25: 0.0039128 |  26: 0.0039137  |   27: 0.0039219 |   28: 0.0039130 |   29: 0.0039079 |   30: 0.0039178 |   31: 0.0039097 
32: 0.0039064 |   33: 0.0038988 |  34: 0.0039124  |   35: 0.0039075 |   36: 0.0039026 |   37: 0.0039108 |   38: 0.0039050 |   39: 0.0039028 
40: 0.0039051 |   41: 0.0038911 |  42: 0.0039081  |   43: 0.0039060 |   44: 0.0039111 |   45: 0.0038964 |   46: 0.0038992 |   47: 0.0039043 
48: 0.0038977 |   49: 0.0039079 |  50: 0.0039117  |   51: 0.0039061 |   52: 0.0039013 |   53: 0.0038952 |   54: 0.0039105 |   55: 0.0039125 
56: 0.0038952 |   57: 0.0038995 |  58: 0.0039106  |   59: 0.0039112 |   60: 0.0039089 |   61: 0.0039003 |   62: 0.0039012 |   63: 0.0039083 
64: 0.0039020 |   65: 0.0039116 |  66: 0.0039057  |   67: 0.0039176 |   68: 0.0039098 |   69: 0.0039044 |   70: 0.0038985 |   71: 0.0039206 
72: 0.0038925 |   73: 0.0039062 |  74: 0.0039068  |   75: 0.0039035 |   76: 0.0038979 |   77: 0.0039082 |   78: 0.0038974 |   79: 0.0039027 
80: 0.0039122 |   81: 0.0038994 |  82: 0.0039148  |   83: 0.0039092 |   84: 0.0039075 |   85: 0.0039035 |   86: 0.0038982 |   87: 0.0039081 
88: 0.0039111 |   89: 0.0038943 |  90: 0.0039058  |   91: 0.0039038 |   92: 0.0039099 |   93: 0.0039126 |   94: 0.0039053 |   95: 0.0039124 
96: 0.0038939 |   97: 0.0039069 |  98: 0.0039014  |   99: 0.0039068 | 100: 0.0039104 | 101: 0.0039104 | 102: 0.0039172 | 103: 0.0039115 

104: 0.0039053 | 105: 0.0038971 | 106: 0.0039039 | 107: 0.0039086 | 108: 0.0038994 | 109: 0.0039132 | 110: 0.0039052 | 111: 0.0039050 
112: 0.0039082 | 113: 0.0039035 | 114: 0.0039122 | 115: 0.0038974 | 116: 0.0039205 | 117: 0.0039023 | 118: 0.0039047 | 119: 0.0038988 
120: 0.0039115 | 121: 0.0039042 | 122: 0.0038978 | 123: 0.0039052 | 124: 0.0039077 | 125: 0.0039047 | 126: 0.0039101 | 127: 0.0039087 
128: 0.0039093 | 129: 0.0038954 | 130: 0.0039054 | 131: 0.0039057 | 132: 0.0039164 | 133: 0.0039026 | 134: 0.0039066 | 135: 0.0039185 
136: 0.0039165 | 137: 0.0039156 | 138: 0.0039060 | 139: 0.0039098 | 140: 0.0039120 | 141: 0.0039066 | 142: 0.0039081 | 143: 0.0039023 
144: 0.0039089 | 145: 0.0039057 | 146: 0.0038993 | 147: 0.0039138 | 148: 0.0039120 | 149: 0.0039115 | 150: 0.0039126 | 151: 0.0039090 
152: 0.0039120 | 153: 0.0038959 | 154: 0.0038989 | 155: 0.0039005 | 156: 0.0039068 | 157: 0.0039019 | 158: 0.0039043 | 159: 0.0039023 
160: 0.0038961 | 161: 0.0039067 | 162: 0.0039056 | 163: 0.0039085 | 164: 0.0039087 | 165: 0.0039088 | 166: 0.0039054 | 167: 0.0039029 
168: 0.0039030 | 169: 0.0039002 | 170: 0.0039038 | 171: 0.0039084 | 172: 0.0039010 | 173: 0.0039020 | 174: 0.0039098 | 175: 0.0039117 
176: 0.0039138 | 177: 0.0038946 | 178: 0.0039079 | 179: 0.0039081 | 180: 0.0039118 | 181: 0.0039095 | 182: 0.0039043 | 183: 0.0039130 
184: 0.0039022 | 185: 0.0038976 | 186: 0.0039111 | 187: 0.0039012 | 188: 0.0039055 | 189: 0.0039082 | 190: 0.0039182 | 191: 0.0039078 
192: 0.0039149 | 193: 0.0038966 | 194: 0.0039100 | 195: 0.0039069 | 196: 0.0039073 | 197: 0.0039028 | 198: 0.0039050 | 199: 0.0039115 
200: 0.0038980 | 201: 0.0039051 | 202: 0.0039011 | 203: 0.0039059 | 204: 0.0038981 | 205: 0.0039053 | 206: 0.0039123 | 207: 0.0039137 
208: 0.0039065 | 209: 0.0039038 | 210: 0.0039042 | 211: 0.0039044 | 212: 0.0038973 | 213: 0.0039131 | 214: 0.0038990 | 215: 0.0039106 
216: 0.0039092 | 217: 0.0039113 | 218: 0.0039005 | 219: 0.0039150 | 220: 0.0038986 | 221: 0.0038979 | 222: 0.0039034 | 223: 0.0039223 
224: 0.0039087 | 225: 0.0039096 | 226: 0.0039135 | 227: 0.0039048 | 228: 0.0039044 | 229: 0.0039123 | 230: 0.0038994 | 231: 0.0039092 
232: 0.0038949 | 233: 0.0038969 | 234: 0.0038972 | 235: 0.0039150 | 236: 0.0039064 | 237: 0.0039011 | 238: 0.0039111 | 239: 0.0038969 
240: 0.0039105 | 241: 0.0039117 | 242: 0.0039003 | 243: 0.0039055 | 244: 0.0039098 | 245: 0.0039079 | 246: 0.0039126 | 247: 0.0039006 
248: 0.0039080 | 249: 0.0039077 | 250: 0.0039062 | 251: 0.0039215 | 252: 0.0038998 | 253: 0.0039069 | 254: 0.0038964 | 255: 0.0039057 

 

Form – (X1, ..., X8)DECIMAL : relative frequency for (X1, ..., X8) 
 

The table exhibits a set of relative frequencies with their 
average values very close to 1/256 = 3.90625·10–3, but with 
the module  
 

(42)   | av (N=8) | =  

= 1/256 


255

1 0,..., NXX

| 1/256 – n(X1, ..., X8) (N = 8) / (n = 100 MB) |  

= 4.83·10–6, 
Hence, the experimental result is very close to the 
theoretical one 
 

(43) | av (N=8) |  (16 (n = 100 MB))–1/2 = 4.87·10–6. 
  

The fact that the values of the sample entropy and the 
expected entropy are different from one (1) result merely 
from the non-zero value of the the masking component. The 
mentioned values of entropy amount to HR(X1, …, X 8) = 
= 1 – 2.18·10–7 and HS(X 1, …, X 8) = 1 – 2.19·10–7.  

The question appears whether such a coincidence 
between the theoretical results and the results obtained 
from measurements of examined sequences finally 
confirms adherence of their model to the model of a first 
order Markov chain. The answer is affirmative also because 
the model is really accurate and sensitive. It can be easily 
verified by introducing even insignificant but periodical 
oscillations of the bias and correlation into the sequence 
under examination or implementation of additional 
correlations that may convert the sequence into a Markov 
chain of higher order. For such a case the probability 
distributions for higher orders and entropies shall no longer 
correspond to the model and the measurement results shall 
be non-compliant and become practically unidentifiable. In 
the practice associated with hardware generation of random 
sequences with use of avalanche diodes it frequently 
happens that the generated sequence is degenerated, e.g. 
with the negative correlation factors K < 0 or with strong 
correlations that correspond to the models of Markov chains 
of the second and third order. Fortunately, the 
measurement results enable immediate identification of 
such sequences and the diode can be replaced with a new 
one, i.e. the one that meets the requirement to generate the 
modeled sequence as the Markov chain of the first order. It 
also may happen that such an avalanche diode fails to 
sustain its properties during long-term operation. The 
practice related to hardware generation of random binary 
sequences adheres to the rule and the mechanism that 
properties and parameters of the output sequence are 
subjected to permanent monitoring and verification whether 
they are in line with the adopted model, i.e. the conformity 
of probability distribution and the entropy values for the 
sequence in question [3]. 

The experimental evidences for stationary and ergodic 
properties are very simple. It is necessary to generate at 
least 3 sample sequences with the size of n = 1 GB and 
check statistics of them for random variables with the 
dimensions N = (1, …, 8). When the same relative 
frequencies with the values corresponding to (31) is 
obtained for each sample one can assume that the samples 
are the outcome of a process that is stationary in 
strict-sense since their distributions are invariant. It is also 
possible to examine higher dimensions (ranks)  
N = (9, …, 12) but if results for N = (1, …, 8) confirm the 
stationarity in the strict sense it will also occurs for higher 
dimensions. The ergodicity is also examined by 
concatenation of 3 samples into a single one with the size 
of 3 GB and examination of its statistics that should be 
identical as for the samples of 1 GB size. The perfectly 
random binary sequences must also lead to uniform 
distributions but the statistics for relative frequencies must 
indicate appropriate and strict values of modules  
– | av (N=8) | = 1.54 ·10–7 for n = 1 GB and | av (N=8) | = 8.9·10–

7 for n = 3 GB.  

Isomorphism of the random binary sequences in the in 
a measure-theoretic sense  

Dealing with the problem of isomorphism attributable to 
dynamical systems Kolmogorov as early as in 50’s of 20th 
century introduced the new understanding of isomorphism 
in a measure-theoretic sense. Such an approach makes it 
possible to compare and classify such systems, including 
sequences, based on the values of their entropy. He was 
the man who found out much deeper and more general 
features in relatively simple Shannon’s presumptions that 
lead to rather heuristic relationship. Kolmogorov highly 
appreciated scientific knowledge and engineering intuition 
of Shannon and wrote about him „In the ages of increasing 
specialization in science, C. Shannon emerges as an 
outstanding talent combining the deep mathematical 
thinking with wide, but concrete reasoning of the current 
technology. He can be considered both as the great 
mathematician and the gifted engineer of the XX century”. 
Although this paper is far away from diving deeply into the 
areas where the theory of dynamical systems can be 
applied it is reasonable to benefit from Shannon’s output in 
the scope of analysis and classification of random 
sequences.  

The fundamental theorems related to the theory of 
dynamical systems with regard to entropy read the 
following:  

The Kolmogorov-Sinai theorem: „if two finite state, 
discrete Bernoulli or Markov processes have different 
entropies, then they are not isomorphic in the measure-
theoretic sense”. This theorem refers to independent 
sequences and dependent random variables.  

Remark – the sequences with different entropies are not 
isomorphic in the measure-theoretic sense by the nature of 
matters. 

Ornstein Theorem: „if two finite state, discrete Bernoulli 
processes have the same entropy, then they are isomorphic 
in the measure-theoretic sense” (simply – „Independent 
processes with the same entropy are isomorphic” [4]). The 
theorem indicates the isomorphism in the measure-theoretic 
sense for any sequences of independent random variables 
with the same entropies.  

Remark – the sequences generated as a result of 
Bernoulli process comprise all possible sub-sequences but 
such sub-sequences may occur with different probabilities. 
In the very specific case the entropies of two different 
sequences may be the same even if probabilities of such 
incorporated sub-sequences are different.  
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Adler, Shields and Smorodinsky Theorem (I): „any two 
irreducible, stationary, finite state, discrete Markov 
processes are isomorphic in the measure-theoretic sense if 
and only if they have the same periodicity and the same 
entropy”. This theorem refers to sequences of dependent 
random variables where the sequences can be modeled as 
periodical Markov chains. A typical example of such a chain 
is a sequence generated by a stream cipher.  
Remark – the nature of the requirement ‘the same 
periodicity’ results from the fact that only the sequences 
with the same period may comprise a finite number of 
subsequences with the same lengths.  
 

Adler, Shields and Smorodinsky Theorem (II): „an 
irreducible, stationary, finite state, discrete Markov process 
is isomorphic in the measure-theoretic sense to a finite 
state, discrete Bernoulli process of the same entropy rate if 
and only if the Markov process is aperiodic”.  
The theorem refers to independent sequences and 
dependent random variables.  
Remark – the nature of the requirement ‘aperiodicity’  
results from the fact that any periodical sequence 
comprises a finite number of sub-sequences with the limited 
length. On the contrary, the non-periodical sequence of 
dependent random variables comprises any sub-sequences 
with unlimited length, similarly to the sequences of 
independent random variables.  
 

One can see that all foregoing theorems assume that 
only the sequences with equal entropies can be considered 
as isomorphic ones with some additional provisions in case 
of sequences made up of dependent random variables and 
modeled as the Markov chains.  
 

Let us now assume that consistency with the model of 
the first-order Markov chain was found out for four samples 
of random chains and these sequences have biases and 
correlations with the following values: 
– first sequence:   s = +10–2, K = +10–2,  
– second sequence:  s = +10–2, K = –10–2,  
– third sequence:  s = –10–2, K = +10–2,  
– fourth sequence:  s = –10–2, K = –10–2.  
 

Let us now ask the following questions  
– are all sequences isomorphic in the measure-theoretic 

sense? Yes, since the conditional entropy H(X2 | X1)   
1 – 1/2·ln2 (4s2 + K2) = 1 – 1.77·10–4 is the same for all 
sequences,  

– do all these sequences exhibit the same mutual 
information? Yes, all exhibit the same mutual information 
I(X 2 ; X 1)  K2/2·ln2 = 7.21·10–5.  

– are all the sequences stationary in the strict-sense and 
ergodic? Yes.  

– are all sequences ergodic in the sense of geometric 
ergodicity and uniform ergodicity? No, since for K < 0 and 
each odd number n the provision takes place  
|| P(n) – P || tv  C(0) Kn < 0, thus the contradiction occurs  
|| P(n) – P || tv < 0.  

– do all sequences have equivalent distributions of 
whichever dimension? No. Only one-dimensional 
distributions for the first/second sequence and for the 
third/fourth sequence are the same. 
Therefore it is possible to conclude that for practical 

applications the entropy is a synthetic and convenient 
indicator of the sequence randomness, in particular for 
large values of N, since it is the merely one-dimensional 
parameter that is able to confirm the level of the sequence 
randomness assumed by its parameters. Therefore it is 
interesting to find out how the entropy can be applied to 
investigation of the sequence randomness.  

For perfectly random binary sequences the entropy can 
confirm the property of perfect randomness and 
demonstrate that the sample entropy adopts nearly the 
same value as the expected entropy that depends merely 
on the sample size. The examination must be carried out for 
independent samples with the sizes n = 10 MB, 100 MB and 
1 GB (minimum 3 samples for each size), for each case at 
least for N = (1, …, 8) at least.  

For imperfectly random binary sequences the entropy 
can confirm the property of satisfactory randomness and 
demonstrate that the sample entropy adopts the value close 
to the expected entropy and these values are strictly 
associated with the parameters of bias and correlation as 
well as the sample size. The examination should be carried 
out for independent samples with the sizes n = 10 MB, 
100 MB and 1 GB (minimum 3 samples for each size), for 
each case for N = (1, …, 8) at least. If the values of sample 
entropy are not close to the values of expected entropy it 
means that the sequence fails to correspond to the model of 
a first order Markov chain.  

Since Adler, Shields and Smorodinsky theorems assume 
stationarity of sequences, the stationarity can be verified 
only by comparison between properties and parameters of 
all samples with the same size. To check ergodicity of 
sequences these samples must be concatenated into a 
single sequence with further investigation of its statistics.  

 

Summary 
The analysis carried out in this paper covered the most 

important properties of random binary sequences modeled 
as binary Markov chains. It was demonstrated that 
assessment whether and how much such sequences can 
be considered as random ones is only possible upon 
analysis of many properties since any incomplete set of 
properties is insufficient to make a trustworthy conclusion 
on the sequence randomness. The proof is provided that 
the most important property of such sequences are 
probability distributions of random variables carried out for 
a finite number of dimensions. These distributions can be 
then verified by measuring relative frequencies of specific 
sub-sequences incorporated into samples of random binary 
sequences. It was also demonstrated that the XOR function 
of M independent imperfectly random binary sequences 
may lead to composition of resulting sequences that can be 
considered as perfectly random binary sequences. Our 
theoretical analysis was confirmed by experimental results.  

The next problem to consider consists in construction of 
a hardware random number generator (HRNG) that shall be 
a tangible generator of random binary sequences suitable 
for practical applications.  

 
Author: dr hab. inż. Marek Leśniewicz, profesor Wojskowego 

Insty-tutu Łączności, Zakład Kryptologii, ul. Warszawska 22A, 05-
130 Zegrze, E-mail: m.lesniewicz@wil.waw.pl, 
marek.lesniewicz@op.pl 

 
REFERENCES 

[1] Rukhin A. et al.: NIST Special Publication 800-22. Revision 1a.  
A Statistical Test Suite for Random and Pseudorandom 
Number Generators for Cryptographic Applications. NIST, April 
2010.  

[2] Leśniewicz M., Expected Entropy as a Measure and Criterion of 
Randomness of Binary Sequences, Przegląd 
Elektrotechniczny, 90 (2014), nr 1, 42-46.  

[3] Leśniewicz M., Sprzętowa generacja losowych ciągów 
binarnych (Hardware generation of binary random sequences), 
Wydawnictwo Wojskowej Akademii Technicznej (Military 
University of Technology), (2009). (In Polish.) 

[4] Meyn S.P., Tweedie R.L, Markov Chains and Stochastic 
Stability. Springer-Verlag (1993, version compiled - 2005).  

 


