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Abstract. Joint probability density function of estimation errors of DGD and power split factor, the parameters defining the first order Polarization 
Mode Dispersion in an optical fibre, is formulated and used as a tool for investigation of influence of uncertainty of the reference signal, required by 
PMD measurement method, on uncertainty of the estimates. With the application of confidence intervals the uncertainty is evaluated through 
numerical analysis. Results can be applicable to PMD monitoring in optical fibre communications.  
 
Streszczenie. Sformułowano model łącznego rozkładu prawdopodobieństwa błędów estymacji DGD i współczynnika podziału mocy, parametrów 
opisujących dyspersję polaryzacyjną I rzędu w światłowodzie, który użyto jako narzędzia do zbadania wpływu niepewności sygnału referencyjnego, 
wymaganego przez metodę pomiaru PMD, na niepewność estymat. Z zastosowaniem przedziałów ufności niepewność estymat została oceniona 
metodą analizy numerycznej. Rezultaty mogą znaleźć zastosowanie w monitorowaniu PMD w komunikacji światłowodowej. (Wpływ niepewności 
sygnału referencyjnego na niepewność estymacji parametrów PMD I rzędu w światłowodzie jednomodowym). 
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Introduction 
Polarization mode dispersion (PMD) effects cannot be 

neglected in an on-off-keying (OOK) fibre optic direct 
detection communication line if transmission data rate is in 
the range of 10 Gbps or higher. Due to the PMD 
phenomenon waveforms of a transmitted signal can be 
distorted to an extent at which transmitted symbols cannot 
be retrieved with satisfactory low probability of error. A 
solution to PMD related limitations to optical 
communications can be an active management of fibers or 
wave-paths that is based on continuous in-work monitoring 
of at least the first order PMD in optical paths [1]. One 
particular method for monitoring PMD is based on learning 
parameters that describe the first order PMD, the differential 
group delay (DGD) and the power split factor between 
polarization modes, from distortions of the received 
waveform resulting from PMD. In this method a reference 
signal, free from PMD effect, is necessary [2]. The 
estimates of PMD parameters are obtained on the basis of 
the inverse problem principle with the use of an adequate 
model of PMD in an optical fibre [3]. For such a PMD 
monitoring system uncertainty of estimates of the first order 
PMD parameters was investigated under limiting 
assumption of negligible reference signal uncertainty [4]. 
The insight into the more general case is still lacking. In [2] 
it was shown that in a typical optical communications 
application scenario the maximum likelihood (ML) solution 
to the inverse problem, that effects the estimates, can be 
the minimum square error (MSE) estimation. If the postulate 
of negligible uncertainty of the reference signal cannot be 
fulfilled the MSE estimator may be no longer the ML one 
and moreover, it can suffer extra errors, in general of both 
static and random types. The aim of the paper is to learn to 
what level possible uncertainty of the reference signal can 
be tolerated while the use of the MSE estimation is 
extended to this more general case. Knowledge that allows 
to answer the above question can be instructive for 
engineering the monitoring system with the aim to provide 
satisfactory quality of the PMD measurements. Due to 
limited space here the focus of the analysis is on 
uncertainty of estimates, although general formulation 
provided allows to evaluate how biased the estimates are. 
Results of these evaluations will be published elsewhere.  
The paper is organized as follows. It starts from brief 
description of a design and functioning of the system for in-
work monitoring of the first order PMD (Section 1). Then the 
MSE type estimator of the first order PMD parameters is 

introduced (Section 2). In the Section 3 an approximation is 
proposed that leads to an analytic model for joint probability 
density of estimation errors distribution. Then the model is 
compared against simulation data. In the Section 4 
uncertainty of the estimates is assessed within targeted 
value range of the first order PMD parameters to be 
monitored. Conclusions summarize the results in the 
Section 5. 
 

The system for in-work monitoring of the first order 
PMD in an optical fibre 

In the system for in-work monitoring of the first order 
PMD, the measuring quality of which is addressed in this 
paper, intensity (power) samples of the transmitted 
waveforms are being taken at both ends of communications 
channel under monitoring. A separate data network is used 
to send the information on the signal being sampled at the 
input of the line to the receiving end (see the Fig. 1). 

 
Fig. 1. The system for in-work monitoring of PMD parameters in a 
communications optical fibre line 

 

In the simplest case this information can be the input 
signal samples themselves. In a more sophisticated variant 
however, the required information can be reduced to 
coefficients (parameters) of static and dynamic 
characteristics of the optical transmitter [5] being some way 
estimated from the input signal samples. Samples are being 
taken using synchronous undersampling principle, like in 
sampling oscilloscopes, hence sampled waveforms are 
virtually reproduced with substantially shorter effective 
sample spacing Te than original sampling is done. It is 
assumed that synchronization allows an integer number of 
samples per bit. The signal samples collected at input and 
output are processed to effect MSE estimates of the PMD 
parameters with the use of a PMD model. 
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Mathematical description of the first order PMD 
parameter estimation 

The phenomena governing propagation of a carrier in an 
optical fibre are well recognized. Optical waveforms 
undergo distortions due to linear effects: chromatic 
dispersion and  polarization mode dispersion as well as 
nonlinear effects, among which the Kerr effect is typically 
the dominating mechanism and, due to interactions 
between linear and nonlinear phenomena. Except optical 
fibre also other optical components, like splitters, filters, 
multiplexers, which are used to build an optical fibre 
communications line, exhibit chromatic and polarization 
mode dispersion or spectral filtration. Optical amplifiers may 
be a source of extra distortions due to nonlinear 
phenomena including gain saturation, polarization hole 
burning, nonlinear dispersion as well as of optical noise, 
mainly of amplified spontaneous emission (ASE) type [6]. 
All this builds complex description on how optical carrier is 
being affected during propagation through an optical 
communications line. However, it is a typical practice in 
optical fibre communications engineering to have chromatic 
dispersion compensated in a distributed manner, along 
length of a communications line. This may cancel or 
substantially decrease the distortions due to chromatic 
dispersion and reduces accumulation of the distortions 
resulting from interaction between linear and nonlinear 
effects. Further, if only a few thoroughly spaced wavepaths 
are exploited in the optical fibre and the total optical power 
in the fibre remains below certain threshold the nonlinear 
effects can be neglected [6]. In [7] optical power thresholds 
are given which, when observed, allow not to exceed 
certain error levels in DGD estimation in the measurement 
system considered in this paper. In the following, only the 
simplest scenario is analysed in which an optical fibre line 
operates in a single channel regime, with chromatic 
dispersion effects cancelled through adequate 
compensation and, in which optical power is low enough to 
neglect influence of nonlinear phenomena. 

The first order polarization dispersion manifests as 
propagation time difference (group delay) between two 
orthogonal polarization modes between which the total 
optical power of the propagating signal is split. Hence, two 
parameters are sufficient to describe the effect: the 
differential group delay (DGD) and the power split factor. 
The received (output) optical signal corresponds to a mix of 
both polarization modes. Photodetection results: 
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where: r(t) and y(t) are electrical equivalents of optical 
power of the transmitted and the output optical signals 
respectively, while  is the DGD and  is the power split 
factor. The formula (1) can be used to relate vectors of 
samples of r(t) and y(t) after time continuous functions are 
replaced with corresponding vectors. Please note however, 
that while the signals are represented now by vectors of 
discrete time samples, the domain of time delays by 0.5 
in (1) is continuous. Then, obtaining samples of a delayed 
signal requires interpolation. In practice, r(t) and y(t) can be 
regarded bandlimited. Hence, Shannon-Whitaker formula 
may have an application here. With this stipulation in mind 
the vector version of the model (1) for PMD induced 
distortions to a signal being propagated in a fibre can be 
expressed as: 
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where: r and y are vectors of collected samples of r(t) and 
y(t) respectively and each component of y is computed from 
r using (1) and interpolation according to which each yk 
element of y is given by: 
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where: N is the number of signal samples, hence vector 
lengths, Te is the effective sampling time interval, Sa(x) is 
the sample function as used in the Shannon-Whitaker 
interpolation formula,  operator denotes circular modulo N 
summation. Linear dependence between y and r, as 
dictated by (1), shall be minded in the following. 

In the context of the monitoring system under 
consideration the y vector in (2) represents output 
measurement data while the r vector represents the 
reference signal (ref Fig. 2). Here both r and y are acquired 
with some uncertainty due to two statistically independent 
measurement noises. The random components of the r and 
y vectors will be denoted respectively by  and . Statistical 
properties of  and , given by corresponding joint density 
probabilities () and (), are assumed known. It shall be 
noted that  and  are vectors of independent components 
which feature results from the use of synchronous 
undersampling principle that substantially spaces the 
samples in the time domain, believed to be beyond the 
range of non-negligible correlation. The MSE estimator 
effects the estimates minimizing the Euclidean distance 
between y and m(r,,) vectors: 
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Fig. 2. The block diagram of the signal acquisition part of the first 
order PMD monitoring system 
 
Modelling uncertainty of the MSE first order PMD 
estimates due to uncertain reference signal 

Although the complete knowledge on estimate 
uncertainty can be learned from the joint probability 
distribution function (pdf) of the estimates of  and  this 
description can be too detailed, hence inconvenient for 
many practical applications. Usually, enough descriptive 
can be a confidence region that determines the minimum 
volume space (i.e. highest probability density space, HPD) 
of estimate values within which the estimates may fall with 
some prescribed confidence probability. Often a suitable 
parametrization of confidence regions is used to simplify 
description. Characterization of the first order PMD 
parameters requires two dimensional confidence regions. 

In case of a general, non-Gaussian, pdf one can use 
confidence intervals (CI) which determine the minimum 
volume rectangular area that contains the 2D confidence 
region. Widths of the rectangular area edges may have 
meaning of widths of corresponding CIs (ref. Fig. 3 right 
panel). Such simplistic characterization provides no 
correlation information. However, it may be an option if 
either the correlation is of little use or, it is too complex to be 
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parametrized in a useful manner.  In the paper widths of 
confidence intervals have been selected to characterize 
uncertainty of PMD estimates. Such a choice is motivated 
by results of the previous studies on uncertainty of 
estimates resulting from MLE estimation in the considered 
PMD monitoring system. It was revealed that, for the case 
when uncertainty of the reference signal is negligible, the 
joint pdf of estimation errors of the two first order PMD 
parameters can be highly non-Gaussian, particularly while 
DGD in a fibre under monitoring is low. 

 
Fig. 3. Widths of confidence intervals for exemplary estimation error 
distributions of the first order PMD parameters 
 

In order the assessment of estimate uncertainty could 
find a use in a design of the PMD monitoring system of 
interest the valuations need to be given under assumption 
that all constitutive quantities, necessary to calculate 
appropriate measures of estimation errors, like the actual 
PMD in a fibre or parameters of measurement noises, 
including noise variance etc., are known. This way objective 
measures of estimation error are obtained, as if the 
measurements were performed in a laboratory environment. 
This is the approach taken in the paper. Under this concept 
all error measure constitutive factors can be identified, 
recognized as either design dependent or independent, 
their influence quantified, hence directions for engineering 
of the monitoring system can be formulated with the intent 
to effect adequate measurement quality for a given 
application context. 

For uncertainty characterization the underlying pdf of the 
estimates’ errors, conditioned on known actual values of 
measurands, is the key. In case of the MSE estimator the 
start formula for the derivation of the joint pdf of estimation 
errors of the first order PMD parameters results from the 
necessary condition for a minimum of the square error 
between the output signal vector and the model (2) fed by 
the reference signal vector. The formula reads: 
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where:  is the vector of noiseless samples of the signal 
output by optical communications line transmitter, 
y=m(,0,0)+, r=+,  and  are the estimates of the DGD 
and power split factor respectively, 0 and 0 denote actual 
values of these first order PMD parameters in the monitored 
fibre,  and  are deviations of  and  from actual values 
of the corresponding measurands, i.e. are the estimation 
errors. 

Previous studies [4] shown that m(,,) cannot be 
linearized with respect to  without loss of essential 
correlation information between the two estimates in the 

joint pdf. Consequently, there is no an analytic solution for 
(6) and the pdf of interest can be approached only via 
approximations or computer simulations. In [4] an 
approximation was proposed that proved to follow 
considerably closely results of computer simulations for the 
case of negligible uncertainty of the reference signal. 
Unfortunately, the direct extension of this idea to the case 
considered in the paper, via adding reference signal 
measurement noise and proceeding with the same 
simplifications, does not work. It cannot explain well the 
biasing of the estimates that emerges with uncertainty of 
the reference signal, the effect shown in simulations (see 
Fig. 4). 

 
Fig. 4. Contour plots of estimation error 2D histograms obtained via 
simulations 

 
A closer look at (6) reveals that in the two upper 

equations, except random terms (X1 and X2 respectively) 
that are linearly related to  and  elements (measurement 
noise samples), there are non-negligible another random 
components (Y1 and Y2) which are sums of weighted 
squares of the  noise vector elements with the weights 
dependent on  and . In fact, Y1 and Y2 are responsible for 
the biasing effect. In case of large number of samples, 
(here N>500), Y1 and Y2 can be considered Gaussian 
distributed tightly around their means which are proportional 
respectively to N

2 and N
2 with individual scaling 

weights. Simulations shown that spreads of Y1 and Y2 are 
orders of magnitude smaller than spreads of X1 and X2. 
Such an observation allows to approximate Y1 and Y2 only 
by their means. In consequence the estimates appear to be 
related to the X1 and X2 random terms as follows: 
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The two functions in (8) that appear in the components 
responsible for the bias are given by: 
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where: d(,) is the vector collecting dk(,) functions for 
k<1,N>. 

In (9) the -dependent components, respectively in X1 
and X2, are two jointly Gaussian distributed random 
variables with zero means and certain correlation matrix, 
say . Analogous observation can be made for the pair of 
the - dependent components of X1 and X2. Their 
correlation matrix will be denoted by . Elements of both 
matrices are given as follows: 
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and = for , and: 
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with  = for . The function u(n,k) provides proper indices 
in summation. Both the -dependent and the -dependent 
pairs remain statistically independent. Then in conclusion, 
the X1 and X2 random variables are also jointly Gaussian 
distributed, have zero means and their correlation matrix 
=+. The above considerations lead to the following 
formulation for the joint pdf of estimation errors of the first 
order PMD parameters: 
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in which J(f1,f2) is Jacobian matrix and: 
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This is the same general formula as in [4] with f1(,), f2(,) 
and the covariance matrix  defined by new relations. 

Before it was decided to use the model (14) for the 
intended characterization of uncertainty of the first order 
PMD estimates the model underwent verification. For this 
reason a number of simulations were run with the use of the 
VPI Transmission Maker simulation tool, a software system 
for photonics communication simulations. Within the 
targeted ranges of the first order PMD parameters, 
0<1.5,7.5> ps for the DGD and, 0<0.05,0.5> for the 
power split factor, a 2020 matrix of equidistributed test 
points was created. Lower, than targeted, 0 and 0 values 
result in negligible distortions to an optical signal, hence 
estimation errors of the first order PMD lose practical 
importance when estimation results are used to evaluate 
transmission quality of an optical signal. The upper limit for 
the analysed DGD values satisfies typical needs of long 
distance optical fibre communications lines. In general, the 
power split factor can range between 0 and 1. However, 
physics of the PMD phenomena instructs that optical power 

of PMD affected signal behaves symmetrically around 
0 = 0.5. 

For each test point the monitoring system, as shown in 
the Fig. 1, was simulated in 106 runs per point. Here, a PMD 
affected fibre was modelled by a PMD emulator, a part of 
VPI Transmisssion Maker library. The intended 0 and 0 
values were parameters directly set in the emulator. The 
transmitter signal (t) was of 10 Gbps binary OOK type with 
0.25Tb rise and fall times (Tb – bit slot time) driven by the 
pseudo-random PRBS7 sequence. Noise levels at sample 
acquisition points were adjusted through proper setting of 
dark currents in models of photodetectors. Following 
combinations of noise levels, given in terms of signal-to-
noise ratios of r(t) reference (SNRr) and y(t) output 
(SNRy) signals, were used: SNRy = {46,∞} dB and 
SNRr = {40,46,52,58} dB. Per an estimate 1024 samples 
were acquired with effective 6.25 ps sampling period. 

 
Fig. 5. Surface plot of the joint pdf of estimation errors computed 
from (16) and the difference between the model and the 
corresponding histogram (bottom black) 

 
For each test point the monitoring system, as shown in 

the Fig. 1, was simulated in 106 runs per point. For each run 
the MSE joint estimator based on the formula (5) produced 
actual values of  and . The recorded differences  = -0 
and  = -0 were used to build 500500 2D estimation 
error histograms h(,,0,0) for each test point. Every 
histogram was compared to the model (14) in the following 
way. For each  value a 1-D histogram conditioned on , 
h(,0,0|), was extracted and  average (0,0|),  
standard deviation (0,0|) and marginal value 
pm(0,0|) were computed. In order to account for 
randomness of the above histogram there were obtained 
CIs at 0.99 level for every value of the mean, standard 
deviation and the marginal. Bootstrap method was used. 
The analysis confirmed that the model (14) with reasonable 
accuracy reproduces the shape of the underlying 
distribution of  and  that have been obtained in 
simulations, in the entire tested range. The means and 
standard deviations from the model (14) agree well with 
those from simulations in regions of  where frequencies 
of  and  occurrence are non-negligible. To be more 
specific, within the HPD intervals of  where the 
pm(0,0|)d  0.99, for the entire targeted 0 and 0 
space and for all combinations of SNRr and SNRy, the 
maximum absolute differences between  means from (14) 
and corresponding CIs bounds from simulation were below 
10-3 while between  standard deviations from (16) and 
corresponding CIs bounds were below 610-2. Please refer 
the example illustrated in the Fig. 5 where the bottom black 
2D part of the plot represents error between the model pdf 
and the histogram. The details are shown in the Fig. 6 
where the  mean (left) and  standard deviation (right) 
conditioned on , versus  are depicted. For better clarity 
the plots show only the upper and lower (mid-grey dashed 
lines for both) CIs boundaries for either mean or standard 
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deviation. The black curve represents the corresponding 
parameter resulting from the model (14). The broken bright 
grey line shows behaviour of the marginal to indicate the 
region within which approximation error matters. 

 
Uncertainty of the first order PMD parameters due to 
reference signal uncertainty 

The following analysis exploits the model (14) of the first 
order PMD estimation errors joint distribution. Despite 
analytic formulation in (14) the relations between measures 
of uncertainties of the estimates of interest and uncertainty 
of the reference signal as well as actual first order PMD in a 
fibre under monitoring, remain complex. Hence, the only 
viable way for learning these relations is a numerical 
analysis. This forces to make assumptions regarding those 
parameters which are not of direct interest however, 
influence results. This concerns selection of a shape of the 
transmitted signal, transmitted data sequence, bit signaling 
interval length, sampling interval, optical and electrical 
filtering and, confidence level, to mention the most 
influential. Here, these questions were answered through 
making commonly agreed choices or a selection of a 
possibly enough representative example. 

In the calculations the transmitted signal (t), data 
sequence, sampling, targeted range of DGD and power split 
factor were assumed as in the previous Section. No optical 
or electrical filtering was applied except that related to the 
PMD phenomenon. Transmitter signal samples were 
obtained from the VPI Transmission Maker simulation tool. 
Confidence level was assumed 0.95. A pdf value driven 2D 
integration algorithm yielded the confidence regions, 
boundaries of which provided CI widths. CIs were 
calculated on a 2020 grid of 0 and 0 values, covering 
targeted 0 and 0 ranges, and for the following 
combinations of signal-to-noise ratios SNRy = {46,∞} dB and 
SNRr = {40,46,52,58,∞} dB. 

Numerical analysis reveals that, while level of 
uncertainty of the reference signal influences widths of CIs 
of the DGD and of the power split factor, the intensity of this 
effect depends on actual PMD (0 and 0) in a fibre under 
monitoring. The widths maximize at the lower limits of the 
targeted measurement range of these quantities, 
irrespectively what  SNRr  and SNRy are. This general 
behaviour is illustrated in the Fig. 7 for an exemplary case 
where SNRr = 46 dB and SNRy = ∞. Generally, uncertainty 
of the reference signal adds to uncertainty of the  and  
estimates with different scale than uncertainty of y(t) does, 
provided equal SNRs. This effect is visible in the low DGD 
range while it gradually vanishes with DGD increase. For 
low actual DGD, at low SNR values, widths of CIs for  
estimate are more affected by uncertainty of y(t) than that of 
r(t). The lower is actual DGD the more emphasised is the 
difference. Analogous discrepancy is even more stressed 
for CIs of  estimate. In particular, at low SNRr the CI can 
even shrink with decrease of actual DGD, if estimate 
uncertainty solely results from r(t) uncertainty, which is 
opposed to that case when it is caused by uncertainty of y(t) 
only. Moreover, if the actual DGD is very low the CI of  
estimate can be narrower for low SNRr when compared with 
that for higher SNRr. In case of non-zero uncertainty of y(t) 
the above behaviour is reproduced for  estimate, and 
appears, for  estimate, which is evidenced by bottom plots 
in the Fig. 8-9. Although the effect could seem anomalous, 
suggesting smaller estimation errors obtainable from more 
uncertain data, mind biasing of the estimates in low DGD 
range, particularly heavily at low SNRr. Then, by no means 
more accurate estimation happens. The anomalous 
reduction of CI widths can be attributed to the shift of the 
joint pdf of estimation errors towards higher  and  values 
(observed at low SNRr) at which the pdf shows smaller 
spread. 

  
Fig. 6. Parametric comparison between pdf from model (14) and simulation data. Left -  means, right  standard deviations, both 
conditioned on , versus  

 
Fig. 7. Widths of confidence intervals for DGD estimates ( left plot) and for power split factor estimates ( right plot) versus actual DGD in a 
fibre. Actual power split factor is the parameter 
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Fig. 8. Widths of confidence intervals for DGD estimates versus actual DGD in a fibre. SNR of the reference signal is the parameter 

  
Fig. 9. Widths of confidence intervals for power split factor estimates versus actual DGD in a fibre. SNR of the reference signal is the 
parameter 
 

In the Fig. 8-9 the top plots illustrate the hypothetical 
case where effects of uncertainty of y(t) are absent 
(SNRy = ∞). Widths corresponding to this case are given by 
solid lines, for certain values of the SNRr. For a comparison 
the widths resulting only from uncertainty of y(t) (SNRr = ∞) 
for the same values of SNR are given by dash lines. The 
bottom plots correspond to a practical case where 
uncertainty of y(t) is non-zero. For a purpose of a design of 
the first order PMD monitoring system of interest the curves 
in the Fig. 8-10 instruct what uncertainty of both signals, 
that source data for PMD estimation, can be tolerated for a 
given targeted uncertainty of PMD estimates. The curves 
are shown only for the lowest extreme of the targeted 0 
range because there the uncertainties maximize (ref. Fig. 
7). On the both bottom plots the dash lines illustrate 
asymptotic behaviour corresponding to SNRr = ∞. 

 
Conclusions 

In the first order PMD monitoring system the reference 
and output signals uncertainties cause errors of MSE 
estimates of PMD parameters, DGD and power split factor, 
that generally show non-Gaussian 2D distribution. Hence, 
the description of how uncertainty of the reference signal 
affects uncertainty of the estimates was made through 
widths of confidence intervals that bound a rectangular area 
containing the actual confidence area. The widths depend 
in a complex way on uncertainty of the reference signal and 
quantities defining PMD. One may focus on worst case 
analysis when an application is a design of the PMD 
monitoring system that satisfies a postulated level of 
measurement uncertainty. The worst case characteristics, 
provided in the paper, that quantify widths of confidence 
intervals for estimates of the two PMD parameters versus 

uncertainties of acquired data and quantities defining PMD, 
can have direct application in such a design. In particular, 
required signal to noise ratios for the reference and output 
signals can be found. A general observation suggests that, 
in the considered monitoring system, uncertainty of the 
reference signal, expressed as SNR below 60dB is unlikely 
to provide estimates of measurands with sufficiently low 
uncertainty for a typical telecomm application. 
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