
262 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 10/2016

Kazimierz KRZYWICKI1, Alexander BARKALOV1, Grzegorz ANDRZEJEWSKI1,
 Larysa TITARENKO1, Małgorzata KOŁOPIEŃCZYK2

University of Zielona Gora, Faculty of Computer, Electrical and Control Engineering
Institute of Metrology, Electronics and Computer Science (1), Institute of Control and Computation Engineering (2)

doi:10.15199/48.2016.10.59

SoC Research and Development Platform
for Distributed Embedded Systems

Abstract. This paper presents a novel research and development hardware platform for distributed embedded systems. The platform is based on
Xilinx Zynq-7000 SoC devices and it enables a fast physical verification and behaviour analysis of the distributed systems. Furthermore, it eliminates
the necessity for usage of a large number of physical devices, which results in the simpler structure and implementation, improved ergonomics in
laboratory, lower costs and eliminates external, physical connection between modules. The article presents the architecture of the platform and
concurrent process implementation using the EmbedCloud structure. Synthesis and optimization results for different number of end modules and an
analysis of resource usage were provided.

Streszczenie. W artykule zaprezentowano nową koncepcję sprzętowej platformy rozwojowo-badawczej dla rozproszonych systemów
wbudowanych. Platforma oparta o układy Xilinx Zynq-7000 SoC, pozwala na szybką fizyczną weryfikację oraz analizę behawioralną systemów
rozproszonych. Ponadto, eliminuje konieczność użycia dużej liczby fizycznych układów, co przekłada się na prostszą strukturę i implementację,
poprawę ergonomii w laboratorium, niższe koszty oraz eliminuje zewnętrzne, fizyczne połączenia pomiędzy modułami. W artykule przedstawiono
architekturę platformy oraz proces współbieżny zaimplementowany przy użyciu metody strukturalnej - EmbedCloud. Syntezy, optymalizacji i analizy
użycia zasobów sprzętowych dokonano dla różnej liczby modułów końcowych. (Modularna platforma rozwojowo-badawcza dla rozproszonych
systemów wbudowanych).

Keywords: embedded systems, distributed systems, research platform, CloudBus protocol, EmbedCloud structure
Słowa kluczowe: systemy wbudowane, systemy rozproszone, platforma badawcza, protokół CloudBus, struktura EmbedCloud

Introduction
The dynamic development of the embedded system has

also caused an increased complexity and size of distributed
systems [1-4]. The design and implementation process
is often complicated and requires long time [1,3]. Moreover,
implementation of such systems causes greater probability
to make mistakes due to large number of modules
and synchronization points. While a lot of issues can be
eliminated at the simulation level, hardware verification
cannot cause damage of the controlled object. Furthermore,
hardware verification is rather easy for simple embedded
systems, but complex, for distributed embedded systems
(DES). This is due to large number of end modules (EM)
that need to exchange the data and synchronize between
each other.

The most common verification method of the embedded
system implementation is simulation [4]. Used tools depend
on the used device and manufacturer, but usually they are
limited to the software that is supplied with a controller.
Simulation allows examining different scenarios [4,5],
but also takes a lot of time and requires a powerful
workstation [5,6]. Moreover, implemented system behaviour
can finally differ from the represented model [7].
 Another method used for system behaviour verification
is its implementation with simulation of controlled object
[4,5]. This method gives good results, but in the case
of DESs it is not efficient. Placing a dozens of EMs in the
laboratory and combine them together is expensive (cost of
the end modules) and burdensome (dozens of end modules
connected with each other in one place). Furthermore,
changes in the implementation or debugging take additional
time.
The authors lead research in the field of DESs synthesis.
They have developed a protocol (called CloudBus [8])
for the data exchange between end modules in the DES.
The CloudBus protocol allows for a significant reduction in
the amount of data transmitted between modules,
especially when compared with other protocols commonly
used in the industry [8]. Moreover, it provides a process
synchronization and control mechanism for a number of

processing units distributed in a network. The CloudBus
protocol is used by EmbedCloud method [9], which forms
the basis for the automatic code generation algorithm of the
DESs. These research are aimed to accelerate
the implementation and verification of the DESs. So far,
verification and hardware tests were performed on the
platform built with microcontrollers. It is efficient and easy to
use for small (up to 5-8 EMs) systems, but burdensome
with a large number of modules operating in the system.
Due to the above-mentioned problems, further research
was more and more difficult, and took up more time. It was
necessary to create a research platform which allows
studying the behavior of the DESs. The main assumption
was: large number of end modules "on one desk" with a
single PC. Previous research [10] of the CloudBus protocol
implementation on FPGA devices (Xilinx and Altera), gave
encouraging results (small resource usage – maximum up
to 3% for the smallest device, Xilinx Kintex-7). Therefore, as
a basis for the platform described below, Xilinx Zynq-7000
[11] System On Chip (SoC) was chosen. Its architecture
allow a single chip to use both: microcontroller (dual-core
ARM) and reprogrammable array (FPGA).

Proposed platform architecture

The research platform is based on Xilinx Zynq-7000
SoC XC7Z020-CLG484-1 mounted on developers board
called ZedBoard (Digilent Inc.). This chip provides 53,200
LUTs (Look-up Tables), 106,400 FFs (Flip-Flops) and dual-
core ARM Cortex-A9. Implemented end modules operated
from 1MHz to 100MHz, depending on the amount of
modules that has been synthesized.

A. General architecture
 The architecture of the platform is shown in Fig. 1.
The platform contains a number of end modules (End
module) and additional submodules for input/output (I/O)
control or communication (UART).

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 10/2016 263

Fig.1. General architecture of the platform

The platform characteristics are the following:

 all modules forms a single distributed control system,
 each EM is self-independent and executes its own

control tasks,
 modules communicate with each other for data

exchange.

The Concentrator module is responsible for
communication. It transmits the data either between EMs or
outside – to other platforms/external EMs.

The UART module provides a communication of the
entire system with a PC. This enables traffic monitoring (data
transmission among EMs) and controlling the state
of the system.

B. End module architecture
 Each End module corresponds to the one hardware
device of the DES. Each of modules is regarded
as a separate and independent unit that cooperates with
others to form a final distributed system. Furthermore, each
EM can be physically implemented by a devices
with a different architectures.
The architecture of the End module is shown in Fig. 2. The
main core is a sub-module Controller, which:

 implements the EmbedCloud structure [9],
 parses the frames of the CloudBus protocol,

collected from the Receiver Buffer,
 sends the CloudBus queries and answers

with a state of variables/input//outputs (Transmitter
Buffer),

 executes implemented control tasks.

Moreover, each EM includes an external input/output port
(I/O) and sub-modules for serial communication (Receiver –
data retrieve, Receiver Buffer – buffer for storing
the received CloudBus protocol frames, Transmitter –
control of the transmit line and TransmitterBuffer – buffer
for storing the CloudBus protocol frames to be sending).
Other sub-modules include the UART for communication
with a PC (optional). Memory is an additional memory
collection for the execution of specific task (optional).
Buffers and size of additional memory can be freely
configured. In this research, the Memory module have been
omitted and communication buffers have been limited
to 36 bytes. This is possible, because the processing
of each frame by the controller is done in a single clock
(CLK) cycle. This clock also synchronizes communication
modules and buffers.

C. Connection concentrator architecture
 This sub-module is responsible for the data transmission
between all of the EMs in the system. Basing on the signals
from the EMs, it determines which of the EMs may currently
broadcast the CloudBus frame. Furthermore,
the Concentrator has two external communication ports
for attaching another test platforms (forming network
in the network topology); and UART sub-module,
which allows direct monitoring both traffic and system state
from the PC.

Fig.2. End module architecture

264 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 10/2016

For the research purposes, the communication speed
between EMs was set to 9600bps. Depending on the
number of EMs it can be either increased or decreased.
The selected speed stems from the need of unifying the
research results and a very large number of end module
implementation. Therefore, it was necessary to set constant
communication speed for all examined scenarios.

D. Implementation
 The platform has been implemented on the Digilent Inc.
development board (called ZedBoard), which is equipped
with a Xilinx Zynq-7000 AP SoC XC7Z020-CLG484-1 (dual-
core ARM Cortex A9 and FPGA array). Main characteristics
of the ZedBoard: 512MB DDR3, 256MB Quad-SPI Flash,
SD card port, 10/100/1000 Mbps Ethernet, USB OTG 2.0,
225MHz HDMI Transmitter and Audio Codec [11,12].
 The first implementation was performed manually in the
Verilog HDL language. Then, the simulation (Active HDL
9.3 [13]), synthesis (Vivado 2015.1 [14,15]) and hardware
tests were performed. After successful verification, a web
application – Automatic Code Generator (ACG) was
implemented using PHP object language. The web
application generated the Verilog source code for EMs in
the number indicated as an argument. The generated
source code implementing the process shown in Fig. 4.
All of generated structures were placed in a single module,
which was ready for the synthesis process. Implementation
of the automatic code generation tool was necessary due to
the very large number of EMs (up to 512). Otherwise, each
of them would have to be implemented manually. Without
the ACG, checking the maximum possible amount
of synthesizable modules would take a very long time and it
would also affect both simulation and debugging times.
Using the ACG, the implementation time for any
of examined end-modules number was less than 1 second.
The application produced output files for all end modules,
sub-modules and test units, which were imported into
Active-HDL and Vivado environment.

Research results

The synthesis, verification and tests were performed for
different numbers of end modules (from 8 to 512). The
logical structure of the platform is shown in Fig. 3. For all
cases the code was generated using the web application
described above. External signals were received by End
Module 1 - x1, End Module 2 - x2. These modules
broadcasted their status to other modules via the CloudBus
protocol. This allowed the transition start and transited the
specified module in the next state. The modules with the
numbers starting from 3, did not have any external outputs
(operating only as a local outputs without connection to I/O
sub-module – Fig. 1). Furthermore, End Module 1 and End
Module 2 used two external outputs: Y0 and Y1.

Fig. 4 presents concurrent process described by a Petri
net. All modules have implemented some tasks (P1, P2, ...,
Px, Py, Pz) i.e. the random state change with local output
state set and random time delays for simulating processing
time. Time delays were implemented on 32-bit counters
with a drawn residual value in the automatic code
generation process.
 Synthesis was made in Vivado 2015.1 using a PC (Intel
Core i7 2630QM, 16GB RAM). Number of Verilog source
files ranged from 22 (for 8 end modules) to 1030 (for 512
end modules). The source code files size ranged from 40kB
to 14MB. This shows how the source files of the DES
increases with increasing the number of modules. For this
reason, manual implementation of each module would take
a very long time. Moreover, with such an amount of end
modules, the mistake is much easier to make. During the

simulation or the system verification any mistake could be
difficult to find in such a large system. This is the main
reason, why the ACG was developed and used.

Fig.3. The logical structure of the platform

Fig.4. Implemented concurrent process described by a Petri net

Table 1. Synthesis results

End
Modules

Count

Resource usage Synthesis
Time

elapsed
[s]

FF FF[%] LUTs LUTs[%]

8 1653 1,55 2149 4,04 82
16 3149 2,96 4109 7,72 138
32 3996 3,76 5663 10,65 158
48* 4838 4,55 7102 13,35 201
64* 5682 5,34 8601 16,17 250
96* 7369 6,93 11488 21,60 349

128* 9056 8,51 14789 27,80 440
256* 15812 14,86 26955 50,67 830
512* 29320 27,56 51253 96,24 1681

In Tab. 1 synthesis results are shown. Defined

configuration and assumptions allowed to synthesize up to
512 EMs on a single platform. The main limitation was the
number of available LUTs (total available number is:
53,200). After the implementation and optimization process,
the amount of used LUTs decreased on average by 20-
30%, while the number of registers (FFs) in use, remained
unchanged (Tab. 2.). The Opt_design implementation
parameter was used with the argument -retarget. Timing
analysis showed for the number of modules that are marked
(*) (above 48), TNS (Total Negative Slack) from -2.5ns to -
1680ns and WNS (Worst Negative Slack) from -0.18ns to -
1.4ns. To avoid changes in the architecture, the solution
was gradually reducing the clock CLK from 100MHz down

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 10/2016 265

to 1MHz. With the clock set to 1MHz system worked
steadily and all EMs correctly exchanged the data between
each other. Network traffic was monitored by a PC via
UART and Concentrator sub-module.

Table 2. Synthesis results after implementation

End
Modules

Count

Resource usage Impl.
Time

elapsed
[s]

FF FF[%] LUTs LUTs[%]

8 1653 1,55 1728 3,25 99
16 3149 2,96 3505 6,59 117
32 3996 3,76 4723 8,88 251
48* 4838 4,55 5732 10,77 168
64* 5682 5,34 6867 12,91 185
96* 7369 6,93 8942 16,81 221

128* 9056 8,51 11301 21,24 263
256* 15812 14,86 20168 37,91 385
512* 29320 27,56 37422 70,38 753

It should be noted that the EMs implemented fairly

simple functionality. For more complicated control system,
the less end-modules would be able to place on the
platform. It has not got great significance, because using
the platform to verification and tests, allows considerable
cost savings, and physical space in laboratory – even for
few modules. However, the proposed architecture enables
direct connection with another platforms of this type
(external ports DATA1_IN/OUT, DATA2_IN/OUT) and
creating network in the network system. As a result, the
number of possible end modules forming a built-in
distributed system can be freely and easily scaled up.

Conclusions
 The paper presents a novel modular research and
development platform, based on Xilinx Zynq-7000 SoC
series. The proposed platform architecture enables a fast
physical verification and behavior analysis of the distributed
embedded systems, including a very large number of end
modules. Additional advantages are: ergonomics, savings
in cost of purchasing a large number of end modules and
implementation/verification time (direct hardware verification
takes less time than simulation which requires powerful
workstation).
 Presented research results for different number of end
modules are satisfactory. Our approach allows
for synthesize up to 512 simple EMs, on a single platform.
Depending on the complexity of the control job executed
by each EM, the possible number of end modules could be
less than 512. However, the capacity of the platform
is so large that it allows making verification and tests of very
complex and complicated DESs. In the case, when the
value of the resource usage exceeds a platform capability,
its architecture allows connecting additional platforms.
Furthermore, it is possible to combine so constructed
platforms of different architecture, i.e. FPGA-FPGA, FPGA-
microcontroller etc. All of this gives great flexibility
in the system architecture and hardware verification. It also
allows avoiding the costs associated with the purchase
of individual end modules, significantly improves
ergonomics and reduces implementation and debugging
time. In the proposed architecture, the end modules are
using for the communication, the CloudBus protocol,
but it is possible to use known protocols (e.g. Modbus,
Profibus or DeviceNet). In such a case, there is no need in
changing the architecture and internal wires – only specific
protocol implementation should be performed. This allows
for network traffic analysis for the various protocols, study
the system operation in different scenarios and searching
the critical points of communication between end modules.

Current research focuses on traffic monitoring
and analysis of the CloudBus network. Moreover, different
variants of the protocol (CloudBus-BS, CloudBus-TL
CloudBus-PC and CloudBus-PCTL) are examined.
This is very important issue, because of the characteristics
of the CloudBus protocol (broadcasting queries about the
state of specific variable). When one of the system end
modules fails or disappear from the system, it is necessary
that the system (other modules) takes appropriate action.
Additional variants of the protocol are intended to prevent
such situations, detect it, and if necessary file a bug report.

Authors:
MSc. Kazimierz Krzywicki, E-mail: K.Krzywicki@wiea.uz.zgora.pl
Prof. Alexander Barkalov, E-mail: A.Barkalov@imei.uz.zgora.pl
Ph.D. Grzegorz Andrzejewski, E-mail: G.Andrzejewski@imei.uz.zg
ora.pl
Prof. Larysa Titarenko, E-mail: L.Titarenko@imei.uz.zgora.pl
University of Zielona Gora, Institute of Metrology, Electronics and
Computer Science, ul. prof. Z. Szafrana 2, 65-246 Zielona Gora;
Ph.D. Małgorzata Kołopieńczyk, E-mail: M.Kolopienczyk@issi.uz.z
gora.pl
University of Zielona Gora, Institute of Control and Computation
Engineering, ul. prof. Z. Szafrana 2, 65-246 Zielona Gora.

REFERENCES
[1] H. Kopetz, “Real-time systems: design principles for

distributed embedded applications”, Springer Science &
Business Media, 2011.

[2] A. Sangiovanni-Vincentelli, M. Di Natale, “Embedded system
design for automotive applications”. Computer, 2007, 10: p.
42-51.

[3] H. Kopetz, "The complexity challenge in embedded system
design", Object Oriented Real-Time Distributed Computing
(ISORC), 2008 11th IEEE International Symposium on. IEEE,
2008, p. 3-12.

[4] D. Gajski, S. Abdi, A. Gerstlauer and G. Schirner ”Embedded
system design: modeling, synthesis and verification”, Springer
Science & Business Media, 2009.

[5] Y. Nakamura, K. Hosokawa, I. Kuroda, K. Yoshikawa and T.
Yoshimura, “A fast hardware/software co-verification method
for system-on-a-chip by using a C/C++ simulator and FPGA
emulator with shared register communication”, In:
Proceedings of the 41st annual Design Automation
Conference. ACM, 2004. p. 299-304.

[6] J. Andrews, “Co-verification of hardware and software for
ARM SoC design”. Elsevier, 2004.

[7] M. Bambagini, M. Di Natale. “A code generation framework for
distributed real-time embedded systems”, Emerging
Technologies & Factory Automation, 2012, p. 1-10

[8] K. Krzywicki, G. Andrzejewski, “Data exchange methods in
distributed embedded systems”, In: New trends in digital
systems design, Fortschritt – Berichte VDI, Dusseldorf, 2014,
p. 126-141

[9] K. Krzywicki, M. Adamski, and G. Andrzejewski,
"EmbedCloud–Design and Implementation Method of
Distributed Embedded Systems", In: Technological Innovation
for Cloud-Based Engineering Systems. Springer International
Publishing, 2015, p. 157-164.

[10] K. Krzywicki, G. Andrzejewski, “Hardware implementation of
the CloudBus protocol using FPGA” In: Proceedings of the
Prague Embedded Systems Workshop, 2014, p. 11-14

[11] Xilinx. Zynq-7000 All Programmable SoC – Technical
Reference Manual, UG585 (v1.10), 2015

[12] AVNET. ZedBoard (Zynq Evaluation and Development)
Hardware Users’s Guide, Version 1.3, 2012

[13] Aldec. Active-HDL Manual.
(https://www.aldec.com/resources/manuals/Active-
HDL/index.htm)

[14] Xlinix. Vivado Design Suite User Guide, Implementation,
UG904 (v2015.1), 2015

[15] Xlinix. Vivado Design Suite User Guide, Design Anaylsis and
Closure Techniques, UG906 (v2012.4), 2013

