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SoC Research and Development Platform 
for Distributed Embedded Systems 

 
Abstract. This paper presents a novel research and development hardware platform for distributed embedded systems. The platform is based on 
Xilinx Zynq-7000 SoC devices and it enables a fast physical verification and behaviour analysis of the distributed systems. Furthermore, it eliminates 
the necessity for usage of a large number of physical devices, which results in the simpler structure and implementation, improved ergonomics in 
laboratory, lower costs and eliminates external, physical connection between modules. The article presents the architecture of the platform and 
concurrent process implementation using the EmbedCloud structure. Synthesis and optimization results for different number of end modules and an 
analysis of resource usage were provided.  
 
Streszczenie. W artykule zaprezentowano nową koncepcję sprzętowej platformy rozwojowo-badawczej dla rozproszonych systemów 
wbudowanych. Platforma oparta o układy Xilinx Zynq-7000 SoC, pozwala na szybką fizyczną weryfikację oraz analizę behawioralną systemów 
rozproszonych. Ponadto, eliminuje konieczność użycia dużej liczby fizycznych układów, co przekłada się na prostszą strukturę i implementację, 
poprawę ergonomii w laboratorium, niższe koszty oraz eliminuje zewnętrzne, fizyczne połączenia pomiędzy modułami. W artykule przedstawiono 
architekturę platformy oraz proces współbieżny zaimplementowany przy użyciu metody strukturalnej - EmbedCloud. Syntezy, optymalizacji i analizy 
użycia zasobów sprzętowych dokonano dla różnej liczby modułów końcowych. (Modularna platforma rozwojowo-badawcza dla rozproszonych 
systemów wbudowanych). 
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Introduction 
The dynamic development of the embedded system has 

also caused an increased complexity and size of distributed 
systems [1-4]. The design and implementation process 
is often complicated and requires long time [1,3]. Moreover, 
implementation of such systems causes greater probability 
to make mistakes due to large number of modules 
and synchronization points. While a lot of issues can be 
eliminated at the simulation level, hardware verification 
cannot cause damage of the controlled object. Furthermore, 
hardware verification is rather easy for simple embedded 
systems, but complex, for distributed embedded systems 
(DES). This is due to large number of end modules (EM) 
that need to exchange the data and synchronize between 
each other. 

The most common verification method of the embedded 
system implementation is simulation [4]. Used tools depend 
on the used device and manufacturer, but usually they are 
limited to the software that is supplied with a controller. 
Simulation allows examining different scenarios [4,5], 
but also takes a lot of time and requires a powerful 
workstation [5,6]. Moreover, implemented system behaviour 
can finally differ from the represented model [7]. 
 Another method used for system behaviour verification 
is its implementation with simulation of controlled object 
[4,5]. This method gives good results, but in the case 
of DESs it is not efficient. Placing a dozens of EMs in the 
laboratory and combine them together is expensive (cost of 
the end modules) and burdensome (dozens of end modules 
connected with each other in one place). Furthermore, 
changes in the implementation or debugging take additional 
time. 
The authors lead research in the field of DESs synthesis. 
They have developed a protocol (called CloudBus [8]) 
for the data exchange between end modules in the DES. 
The CloudBus protocol allows for a significant reduction in 
the amount of data transmitted between modules, 
especially when compared with other protocols commonly 
used in the industry [8]. Moreover, it provides a process 
synchronization and control mechanism for a number of 

processing units distributed in a network. The CloudBus 
protocol is used by EmbedCloud method [9], which forms 
the basis for the automatic code generation algorithm of the 
DESs. These research are aimed to accelerate 
the implementation and verification of the DESs. So far, 
verification and hardware tests were performed on the 
platform built with microcontrollers. It is efficient and easy to 
use for small (up to 5-8 EMs) systems, but burdensome 
with a large number of modules operating in the system. 
Due to the above-mentioned problems, further research 
was more and more difficult, and took up more time. It was 
necessary to create a research platform which allows 
studying the behavior of the DESs. The main assumption 
was: large number of end modules "on one desk" with a 
single PC. Previous research [10] of the CloudBus protocol 
implementation on FPGA devices (Xilinx and Altera), gave 
encouraging results (small resource usage – maximum up 
to 3% for the smallest device, Xilinx Kintex-7). Therefore, as 
a basis for the platform described below, Xilinx Zynq-7000 
[11] System On Chip (SoC) was chosen. Its architecture 
allow a single chip to use both: microcontroller (dual-core 
ARM) and reprogrammable array (FPGA).  
   
Proposed platform architecture 

The research platform is based on Xilinx Zynq-7000 
SoC XC7Z020-CLG484-1 mounted on developers board 
called ZedBoard (Digilent Inc.). This chip provides 53,200 
LUTs (Look-up Tables), 106,400 FFs (Flip-Flops) and dual-
core ARM Cortex-A9. Implemented end modules operated 
from 1MHz to 100MHz, depending on the amount of 
modules that has been synthesized. 
 
A. General architecture 
 The architecture of the platform is shown in Fig. 1. 
The platform contains a number of end modules (End 
module) and additional submodules for input/output (I/O) 
control or communication (UART). 
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Fig.1. General architecture of the platform 
 
 
The platform characteristics are the following:  

 all modules forms a single distributed control system, 
 each EM is self-independent and executes its own 

control tasks, 
 modules communicate with each other for data 

exchange. 
 

The Concentrator module is responsible for 
communication. It transmits the data either between EMs or 
outside – to other platforms/external EMs. 

The UART module provides a communication of the 
entire system with a PC. This enables traffic monitoring (data 
transmission among EMs) and controlling the state 
of the system. 
 
B. End module architecture 
 Each End module corresponds to the one hardware 
device of the DES. Each of modules is regarded 
as a separate and independent unit that cooperates with 
others to form a final distributed system. Furthermore, each 
EM can be physically implemented by a devices 
with a different architectures. 
The architecture of the End module is shown in Fig. 2. The 
main core is a sub-module Controller, which: 

 implements the EmbedCloud structure [9], 
 parses the frames of the CloudBus protocol, 

collected from the Receiver Buffer, 
 sends the CloudBus queries and answers 

with a state of variables/input//outputs (Transmitter 
Buffer), 

 executes implemented control tasks. 
 

Moreover, each EM includes an external input/output port 
(I/O) and sub-modules for serial communication (Receiver – 
data retrieve, Receiver Buffer – buffer for storing 
the received CloudBus protocol frames, Transmitter – 
control  of the transmit line and TransmitterBuffer – buffer 
for storing the CloudBus protocol frames to be sending). 
Other sub-modules include the UART for communication 
with a PC (optional). Memory is an additional memory 
collection for the execution of specific task (optional).  
Buffers and size of additional memory can be freely 
configured. In this research, the Memory module have been 
omitted and communication buffers have been limited 
to 36 bytes. This is possible, because the processing 
of each frame by the controller is done in a single clock 
(CLK) cycle. This clock also synchronizes communication 
modules and buffers. 
 
C. Connection concentrator architecture 
 This sub-module is responsible for the data transmission 
between all of the EMs in the system. Basing on the signals 
from the EMs, it determines which of the EMs may currently 
broadcast the CloudBus frame. Furthermore, 
the Concentrator has two external communication ports 
for attaching another test platforms (forming network 
in the network topology); and UART sub-module, 
which allows direct monitoring both traffic and system state 
from the PC.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. End module architecture 
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For the research purposes, the communication speed 
between EMs was set to 9600bps. Depending on the 
number of EMs it can be either increased or decreased. 
The selected speed stems from the need of unifying the 
research results and a very large number of end module 
implementation. Therefore, it was necessary to set constant 
communication speed for all examined scenarios.  
 
D. Implementation 
 The platform has been implemented on the Digilent Inc. 
development board (called ZedBoard), which is equipped 
with a Xilinx Zynq-7000 AP SoC XC7Z020-CLG484-1 (dual-
core ARM Cortex A9 and FPGA array). Main characteristics 
of the ZedBoard: 512MB DDR3, 256MB Quad-SPI Flash, 
SD card port, 10/100/1000 Mbps Ethernet, USB OTG 2.0, 
225MHz HDMI Transmitter and Audio Codec [11,12]. 
 The first implementation was performed manually in the 
Verilog HDL language. Then, the simulation (Active HDL 
9.3 [13]), synthesis (Vivado 2015.1 [14,15]) and hardware 
tests were performed. After successful verification, a web 
application – Automatic Code Generator (ACG) was 
implemented using PHP object language. The web 
application generated the Verilog source code for EMs in 
the number indicated as an argument. The generated 
source code implementing the process shown in Fig. 4. 
All of generated structures were placed in a single module, 
which was ready for the synthesis process. Implementation 
of the automatic code generation tool was necessary due to 
the very large number of EMs (up to 512). Otherwise, each 
of them would have to be implemented manually. Without 
the ACG, checking the maximum possible amount 
of synthesizable modules would take a very long time and it 
would also affect both simulation and debugging times. 
Using the ACG, the implementation time for any 
of examined end-modules number was less than 1 second. 
The application produced output files for all end modules, 
sub-modules and test units, which were imported into 
Active-HDL and Vivado environment. 
 
Research results 

The synthesis, verification and tests were performed for 
different numbers of end modules (from 8 to 512). The 
logical structure of the platform is shown in Fig. 3. For all 
cases the code was generated using the web application 
described above. External signals were received by End 
Module 1 - x1,  End Module 2 - x2. These modules 
broadcasted their status to other modules via the CloudBus 
protocol. This allowed the transition start and transited the 
specified module in the next state. The modules with the 
numbers starting from 3, did not have any external outputs 
(operating only as a local outputs without connection to I/O 
sub-module – Fig. 1). Furthermore, End Module 1 and End 
Module 2 used two external outputs: Y0 and Y1.  

Fig. 4 presents concurrent process described by a Petri 
net. All modules have implemented some tasks (P1, P2, ..., 
Px, Py, Pz) i.e. the random state change with local output 
state set and random time delays for simulating processing 
time. Time delays were implemented on 32-bit counters 
with a drawn residual value in the automatic code 
generation process. 
 Synthesis was made in Vivado 2015.1 using a PC (Intel 
Core i7 2630QM, 16GB RAM). Number of Verilog source 
files ranged from 22 (for 8 end modules) to 1030 (for 512 
end modules). The source code files size ranged from 40kB 
to 14MB. This shows how the source files of the DES 
increases with increasing the number of modules. For this 
reason, manual implementation of each module would take 
a very long time. Moreover, with such an amount of end 
modules, the mistake is much easier to make. During the 

simulation or the system verification any mistake could be 
difficult to find in such a large system. This is the main 
reason, why the ACG was developed and used. 

 
Fig.3. The logical structure of the platform 
 

 
 
Fig.4. Implemented concurrent process described by a Petri net 
 
Table 1. Synthesis results 

End 
Modules 

Count 

Resource usage Synthesis 
Time 

elapsed 
[s] 

FF FF[%] LUTs LUTs[%] 

8 1653 1,55 2149 4,04 82 
16 3149 2,96 4109 7,72 138 
32 3996 3,76 5663 10,65 158 
48* 4838 4,55 7102 13,35 201 
64* 5682 5,34 8601 16,17 250 
96* 7369 6,93 11488 21,60 349 

128* 9056 8,51 14789 27,80 440 
256* 15812 14,86 26955 50,67 830 
512* 29320 27,56 51253 96,24 1681 
 
In Tab. 1 synthesis results are shown. Defined 

configuration and assumptions allowed to synthesize up to 
512 EMs on a single platform. The main limitation was the 
number of available LUTs (total available number is: 
53,200). After the implementation and optimization process, 
the amount of used LUTs decreased on average by 20-
30%, while the number of registers (FFs) in use, remained 
unchanged (Tab. 2.). The Opt_design implementation 
parameter  was used with the argument -retarget. Timing 
analysis showed for the number of modules that are marked 
(*) (above 48), TNS (Total Negative Slack) from -2.5ns to -
1680ns and WNS (Worst Negative Slack) from -0.18ns to -
1.4ns. To avoid changes in the architecture, the solution 
was gradually reducing the clock CLK from 100MHz down 
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to 1MHz. With the clock set to 1MHz system worked 
steadily and all EMs correctly exchanged the data between 
each other. Network traffic was monitored by a PC via 
UART and Concentrator sub-module. 
 
Table 2. Synthesis results after implementation 

End 
Modules 

Count 

Resource usage Impl. 
Time 

elapsed 
[s] 

FF FF[%] LUTs LUTs[%] 

8 1653 1,55 1728 3,25 99 
16 3149 2,96 3505 6,59 117 
32 3996 3,76 4723 8,88 251 
48* 4838 4,55 5732 10,77 168 
64* 5682 5,34 6867 12,91 185 
96* 7369 6,93 8942 16,81 221 

128* 9056 8,51 11301 21,24 263 
256* 15812 14,86 20168 37,91 385 
512* 29320 27,56 37422 70,38 753 
 
It should be noted that the EMs implemented fairly 

simple functionality. For more complicated control system, 
the less end-modules would be able to place on the 
platform. It has not got great significance, because using 
the platform to verification and tests, allows considerable 
cost savings, and physical space in laboratory – even for 
few modules. However, the proposed architecture enables 
direct connection with another platforms of this type 
(external ports DATA1_IN/OUT, DATA2_IN/OUT) and 
creating network in the network system. As a result, the 
number of possible end modules forming a built-in 
distributed system can be freely and easily scaled up. 

 
Conclusions 
 The paper presents a novel modular research and 
development platform, based on Xilinx Zynq-7000 SoC 
series. The proposed platform architecture enables a fast 
physical verification and behavior analysis of the distributed 
embedded systems, including a very large number of end 
modules. Additional advantages are: ergonomics, savings 
in cost of purchasing a large number of end modules and 
implementation/verification time (direct hardware verification 
takes less time than simulation which requires powerful 
workstation). 
 Presented research results for different number of end 
modules are satisfactory. Our approach allows 
for synthesize up to 512 simple EMs, on a single platform. 
Depending on the complexity of the control job executed 
by each EM, the possible number of end modules could be 
less than 512. However, the capacity of the platform 
is so large that it allows making verification and tests of very 
complex and complicated DESs. In the case, when the 
value of the resource usage exceeds a platform capability, 
its architecture allows connecting additional platforms. 
Furthermore, it is possible to combine so constructed 
platforms of different architecture, i.e. FPGA-FPGA, FPGA-
microcontroller etc. All of this gives great flexibility 
in the system architecture and hardware verification. It also 
allows avoiding the costs associated with the purchase 
of individual end modules, significantly improves 
ergonomics and reduces implementation and debugging 
time. In the proposed architecture, the end modules are 
using for the communication, the CloudBus protocol, 
but it is possible to use known protocols (e.g. Modbus, 
Profibus or DeviceNet). In such a case, there is no need in 
changing the architecture and internal wires – only specific 
protocol implementation should be performed. This allows 
for network traffic analysis for the various protocols, study 
the system operation in different scenarios and searching 
the critical points of communication between end modules. 

Current research focuses on traffic monitoring 
and analysis of the CloudBus network. Moreover, different 
variants of the protocol (CloudBus-BS, CloudBus-TL 
CloudBus-PC and CloudBus-PCTL) are examined. 
This is very important issue, because of the characteristics 
of the CloudBus protocol (broadcasting queries about the 
state of specific variable). When one of the system end 
modules fails or disappear from the system, it is necessary 
that  the system (other modules) takes appropriate action. 
Additional variants of the protocol are intended to prevent 
such situations, detect it, and if necessary file a bug report. 
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