
26 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 8/2015

Piotr KOPNIAK

Lublin University of Technology

doi:10.15199/48.2015.08.07

Motion capture using multiple Kinect controllers

Abstract. The following paper describes the process of developing a motion capture system with the use of Microsoft Kinect 360 and Kinect One
controllers. The article presents how to use multiple Kinect controllers parallely and how to employ the existing freeware programming frameworks to
produce an appropriate motion capture software. The article shows the results of comparison of single and multiple Kinect motion capture systems.
The summary of this study will collect the research results and include some suggestions for the future development of this motion capture system.

Streszczenie. Artykuł opisuje proces budowy systemu akwizycji ruchu (ang. motion capture) z wykorzystaniem kontrolerów Microsoft Kinect 360 i
Kinect One. Przedstawiono w nim sposób użycia kilku kontrolerów równolegle i sposób wykorzystania darmowych szkieletów programistycznych do
stworzenia oprogramowania do rejestracji ruchu. Artykuł zawiera wyniki porównania systemów akwizycji ruchu wykorzystujących jeden oraz dwa
kontrolery jednocześnie oraz wskazuje ścieżki przyszłego rozwoju systemu. (Akwizycja ruchu z wykorzystaniem kilku kontrolerów Kinect)

Keywords: motion capture, 3D graphics, game controllers, stereovision, skeleton tracking, Kinect.
Słowa kluczowe: akwizycja ruchu, grafika 3D, kontrolery gier, stereowizja, śledzenie szkieletu, Kinect.

Introduction
Motion capture (mocap - for short) is a human body motion
recording technique. Motion capture systems allow us to
capture three-dimensional data which is a digital
representation of the spatio-temporal structure of the
motion. This technique is commonly used in sport to
optimize training, in medicine for orthopedic analysis of
motion impediments or to verify the rehabilitation process.
Motion capture data is a source for analysis in different
activity recognitions systems. The most known applications
of mocap systems are movie and game production. The
data achieved by mocap systems allows us to prepare
realistic animations of artificial characters [1, 2].
 Motion capture systems consist of special hardware and
dedicated software. There are a few different types of
mocap systems on the market. Video based systems utilize
video cameras, electromagnetic systems use emitters and
detectors of electromagnetic field, mechanical systems use
external skeletons with potentiometers and finally inertial
systems use trackers with accelerometers [3, 4, 5]. Almost
all of them have one common feature. They are very
expensive. This situation results in a necessity to invent
cheaper and more available solutions, e.g. a system which
uses PlayStation Eye [6] cameras or Microsoft Kinect [7].
 This article describes how to build cheap mocap system
with use of Microsoft Kinect controllers and open source
computer vision frameworks. Prepared solution allows us to
use one or more Kinect devices and includes the software
developed in Java language on the basis of OpenNI
framework and J4K library. Motion capture system
application depends on the system's precision, so it was
important to determine the accuracy of the new solution.
The described system was tested to find its accuracy in joint
angle measurements with the use of one and two capture
devices. The results of conducted research represent the
main part of the article.

Kinect controller

Kinect is a motion sensing input device developed by
PrimeSense and Microsoft for the Xbox 360 video game
console and next adopted for Windows PCs. The second
version, that is Kinect One was developed for Xbox One
console. Thanks to available drivers we may use them with
different operating systems. Kinect controllers enable users
to control and interact with the Xbox consoles remotely. The
user may interact with applications through a natural user
interface using gestures and spoken commands.

Kinect 360 has built in structured light emitter (number 2
in picture 1) and two CMOS cameras (numbers 3 and 6).
One of them is a RGB camera, and the second is an IR
monochromatic receiver for depth measurement. Spoken
commands and spatial sound is recorded by a group of
microphones with noise reduction (marked as number 1)
[8].

Fig. 1. Diagram of elements of Kinect 360 controller [9]

Kinect 360 controller is based on PrimeSense patented
technology [10]. PrimeSense hardware generates a depth
map of observed 3D scene. The Kinect combines structured
light with two classic computer vision techniques: depth
from focus, and depth from stereo for this purpose. Inside
structure of Kinect One is not so exactly known yet. What is
known it is that Kinect One has got Microsoft X871141-001
SoC which replaces the Prime Sense chip, and three laser
diodes for structured light emission.
 Laser based structured light emitter projects special
pattern of multiple spots having respective positions and
shapes. The positions of the spots in the pattern are
uncorrelated, while the shapes share a common
characteristic. The depth from focus uses the principle that
stuff that is more blurry is further away. The astigmatic lens
causes a projected circle to become an ellipse whose
orientation depends on the depth. Depth from stereo uses
parallax. The Kinect analyzes the shift of the speckle
pattern by projecting from one location and observing it
from another. The image of spots on the object is captured
and processed so as to derive a three-dimensional (3D)
map of the object [11]. Next the depth map is used for users
localisation and determination of their body parts. After that
joint localisations are computed and human skeletons are
built. Time based differences of human body joint
localisation in 3D space represent motion which may be
recorded as motion capture data for further processing.
 Comparison of Kinect 360 and Kinect One Microsoft
datasheets is presented in Table 1.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 8/2015 27

Available programing libraries
 The described mocap solution uses Kinect controllers.
To complete the system it was necessary to develop
appropriate software, which would communicate with these
controllers. Kinect sensor was originally prepared for Xbox
game console but many different potential applications and
various programing solutions give us the ability to connect it
with PC regardless. PC Kinect drivers and frameworks and
libraries such as: CL NUI Platform [12], OpenKinect [13],
OpenNI [14] and J4K [15] are available for Windows,
MacOS X, Linux and ARM systems.

Table 1. Comparison of depth measurement features of Kinect 360
and Kinect One controllers

Feature Kinect 360 Kinect One

Min - Max Depth
Distance

0.8 m (0.4 m in near
mode) - 4.5 m

0.5 m – 8 m

Depth Camera
Resolution

320 x 240 512 x 424

Framerate 30 Hz 30 Hz

Angular Field of View 57° x 43° 70° x 60°

Skeleton Joints Defined 20 25

Full Skeletons Tracked 2 6

 Microsoft has started distributing official Kinect SDK for
Windows in June 2011. Since then it is available for
programmers for non-commercial use, and for commercial
use since February 2012 [16].
 There are few Kinect programming frameworks which
we may use freely as it was mentioned above. One of the
most functional and the best extensible is OpenNI SDK. It
was used to develop application for communication with
Kinect 360 controller.
 The OpenNI framework is an open source SDK used for
the development of 3D sensing middleware libraries and
applications. In other words it is API for communicating with
devices which measure depth and record an image
information via underlying drivers. PrimeSense NiTE
middleware algorithms for interpreting depth information,
e.g. user detection, hand and skeleton tracking or gesture
recognitions are now available as a standalone middleware
package on top of OpenNI [17]. Previously, NiTE was
included into OpenNI via plug-ins. High level diagram of the
OpenNI/NiTE 2 architecture is presented in Figure 2 [18].

Fig. 2. Architecture of OpenNI/NiTE 2 framework

 Irrespective of NiTE any other third party middleware
may be simply built to run on top of OpenNI. Links to the
most popular of them are available at OpenNI homepage.

 To sum up it may be said that it is required to install a
few components to develop applications which use the
Kinect sensor with OpenNI. They are Microsoft Kinect SDK
[19], OpenNI and NiTE middleware. Previous release of
OpenNI used a special Kinect driver but the present release
is adapted to Microsoft driver from Microsoft Kinect SDK.
 Microsoft Kinect SDK is required also to establish
communication with Kinect One controller using J4K library.
J4K uses Java Native Interface to communicate with
Windows library which handles the depth, color, infrared,
and skeleton streams. J4K library contains several
convenient Java classes that convert these streams into
Java objects. Optionally, it is possible to use JogAmp's
JOGL Java library to visualize the Kinect data as 3D
textured surfaces in openGL.

Multi Kinect solution
 The main aim of this research was to evaluate efficiency
of angle measurement with multiple Kinect 360 devices.
The Kinect 360 controller uses a modified USB port.
Connection to PC requires a special cable and additional
power supplier which are currently attached to the device
bundle. To use multiple capturing devices simultaneously it
was necessary to connect them to different USB controllers
because of a huge Kinect data bandwidth. If we want to
develop applications we must know that not all frameworks
support multi-device configuration. Multiple Kinects 360
configuration is supported by J4K, CL NUI Platform or
OpenNI 2.x with NiTE 2.x. For instance, the previous
releases of OpenNI and NiTE did not support it.
 Chosen framework was OpenNI because of its huge
functionality and previous experience. J4K was used only
for connection with single Kinect One controller. This library
will be used in future research with multiple Kinect One
controllers.

Motion capture software
 OpenNI and NiTE offer C++ standard API, but both of
them also have got Java wrappers. It means that it is
possible to develop computer vision and motion capture
applications in C++ or Java language. Both libraries include
runnable examples for both languages with source codes.
Mocap solution described in this article was developed in
Java programming language.
 To prepare Java application for Kinect data processing it
is necessary to import two Java libraries included in Redist
folders inside OpenNI SDK and NiTE. They are
respectively: org.openni.jar and com.primesense.nite.jar.
Java wrapper uses JNI technology to invoke native
functions, so it is necessary to load native libraries OpenNI
and NiTE at the beginning.
 The next required step is library initialisation. In this step
the needed resources are reserved and the connection to
capture devices is prepared. After that it is possible to
enumerate the capture devices and open device
connections. Sample Java code opening device
connections, making UserTracker object for user tracking
and opening distinct UserViewer window for each Kinect
device is presented below:

List<DeviceInfo> devicesInfo =
 OpenNI.enumerateDevices();
if (devicesInfo.size() == 0) {
 JOptionPane.showMessageDialog(null, "No device
 is connected",
 "Error",JOptionPane.ERROR_MESSAGE);
 return;
}else{
 System.out.println("Number of connected
 devices:"+devicesInfo.size());
}

User application

Middleware
module, e.g.,

NiTE

OpenNI2 Drivers:
e.g., Kinect

3-rd party
custom drivers

OpenNI/NiTE

OpenNI 2

28 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 8/2015

int count=0;
Device device;
UserTracker tracker;
for(DeviceInfo devInfo:devicesInfo){
 device = Device.open(devInfo.getUri());
 tracker = UserTracker.create(device);
 new UserViewerApplication(tracker, i).start();
 i++;
}

UserViewer class implements NewFrameListener interface
and onNewFrame() method. Instance of UserViewer is
event listener which reacts when a new frame is received
from a Kinect controller. The reaction is reading of the
frame and extracting the depth and user data out of it. The
next steps are: colouring user body pixels, drawing limbs,
computing joint angle and repainting window content. The
most important fragments of the code are presented below:

public void onNewFrame(UserTracker tracker) {
 …
 mLastFrame = mTracker.readFrame();
 for (UserData user : mLastFrame.getUsers()) {
 if (user.isNew()) {
 mTracker.startSkeletonTracking(user.getId());
 }
 }
 VideoFrameRef depthFrame =
 mLastFrame.getDepthFrame();
 if (depthFrame != null) {
 ByteBuffer frameData =
 depthFrame.getData().
 order(ByteOrder.LITTLE_ENDIAN);
 ByteBuffer usersFrame =
 mLastFrame.getUserMap().
 getPixels().
 order(ByteOrder.LITTLE_ENDIAN);
 …
 }
 repaint();
 }

//method invocation getAngle(user.getSkeleton())

private void getAngle(Skeleton skeleton){
 counter++;
 if(counter%30==0){
 point1 =
 skeleton.getJoint(JointType.LEFT_ELBOW).
 getPosition();
 point2 =
 skeleton.getJoint(JointType.LEFT_HAND).
 getPosition();
 angleXY =
 180– Math.round(Math.toDegrees(Math.atan2(
 (Float)point2.getY()-(Float)point1.getY(),
 (Float)point2.getX()-
 Float)point1.getX())));
 …
 }
}

 The result of the code is an application which opens as
many windows as the number of controller is and each
window displays the depth map with coloured users and
drawn users' skeletons. Example windows are presented in
Figure 3.
 A code of an application using J4K library for Kinect One
is very similar. A class edu.ufl.digitalworlds.j4k.Skeleton
offers a method for joint localisation retrieval:

public float[] getJointPositions();
 As we can see in presented above Java code the angle
was computed as a vector angle. The vector was built on
the base of two successive joint localisations computed by
NiTE library. Because of assumptions that it was necessary
to check quality of Kinect device with Kinect SDK software
and that the algorithm would use input data computed

outside no additional calibration was needed on the
beginning. To achieve better results for specific person
appropriate mapping of measured and real angle may be
done. The problem is that the configuration made by
calibration step is very weak, because of the fact that joint
localisation computed by SDK and NiTE are unstable and
changes quite frequently.

Fig. 3. Depth maps generated by two Kinect 360 controllers with
coloured user and drawn skeletons

Conducted research
 Our previous research concerning invention of a cheap
motion capture system was conducted with use of only one
Kinect device [7]. To determine motion capture quality of
the new system it was decided to verify the accuracy of joint
flexion measurement. Elbow node of a human skeleton was
selected to test it. The flection angles of elbow joint
measured by the controller were compared to real angles
determined by the lines drawn on a testing board. The
board had lines marked with angles 0°, 15°, 30°, 45°, 60 °,
and 90°. The image of the testing board which was cap-
tured through Kinect RGB camera is presented in Figure 4.

Fig. 4. Testing board, hand and hand limb generated by NiTE
middleware

 The measurements were performed 30 times for each
marked angle in three separate planes determined by axis
X and Y, Y and Z and X and Z in left-hand 3D coordinate
system. The view axis of the Kinect camera was in line with
the Z axis. Average values of measured angles in each
plane are presented in Table 2.

Table 2. Joint flexion angle measurement in XY, YZ and XZ planes
for Kinect 360 (K.360) and Kinect One (K.One)

XY Board 0° 15° 30° 45° 60° 75° 90°

K.360 2° 16° 29° 43° 57° 73° 86°

K.One 3° 13° 32° 48° 64° 77° 81°

YZ Board 0° 15° 30° 45° 60° 75° 90°

K.360 -1° 3° 10° 19° 32° 53° 94°

K.One 16° 23° 25° 36° 44° 49° 65°

XZ Board 0° 15° 30° 45° 60° 75° 90°

K.360 9° 45° 62° 70° 78° 89° 93°

K.One 5° 16° 29° 40° 50° 66° 78°

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 8/2015 29

 The results obtained show that the measured values are
close to real values only in a plane perpendicular to the
direction of the camera. The applied software has a
problem with the correct calculation of joint positions
(shown in Figure 4). The second problem is inaccurate
determination of bone motion in direction parallel to
camera’s view axis. These problems appeared during
measurements with both Kinect generations. As we can see
Kinect One, the successor of Kinect 360 with more
advanced depth measurement features, returned data with
error level close to error level of Kinect 360.
 The next step in the study was angle measurement
using two Kinect 360 controllers simultaneously. A diagram
of the test system is shown in Figure 5.

Fig. 5. Diagram of a test system with two Kinect 360 controllers

Distances of both Kinects 360 from the board were
determined with a measurement tape. The 90° angle was
adjusted with use of two Xsens MTx inertial motion trackers
[3]. The maximum error of MTx tracker is equal to 2° [5].
 The angle of joint flection was calculated as an average
value of measurements made by each device. Tests in YZ
plane were omitted due to the fact that in this configuration
one of the cameras was still covered up by testing board.
Results of the measurements are shown in Table 3.

Table 3. Efficiency of joint flexion angle measurement by two Kinect
devices

X
Y

Board 0° 15° 30° 45° 60° 75° 90°

Kinect 1 0° 16° 28° 44° 55° 68° 84°

Kinect 2 2° 16° 31° 44° 59° 75° 89°

Average 1° 16° 29,5° 44° 57,5° 71,5° 87°

X
Z

Board 0° 15° 30° 45° 60° 75° 90°

Kinect 1 -3° 13° 33° 51° 61° 83° 98°

Kinect 2 6° 19° 32° 45° 58° 70° 87°

Average 1,5° 16° 32,5° 48° 59,5° 76,5° 92,5°

The achieved results show that the use of two Kinect
controllers at the same time improved significantly the
measurement. Results compared to the system with one
controller even that it is Kinect One were better. In addition,
the system of two Kinects allows partial elimination of errors
associated with the correct determination of the position of
the joints in the 3D space. Floating positions of joints
resulted in large errors in the measurement in case of
motion capturing by a single controllers.

Summary
 Many motion capture systems are very expensive. This
article shows that a cheap motion capture system may be
built with the use of Kinect game controllers and available
programming frameworks. Such system is able to build
depth map of the observed scene, detect users and
compute their skeletons’ localizations or gesture

recognition. The achieved skeletal data may be later used
as a source for creating a realistic animation of a human
like body or for different motion analysis. The captured data
should be saved in a file. We may use one of motion file
formats, e.g. C3D or BVH but this element of the system
has not been implemented yet. The interface for saving files
and sending raw data to application for motion visualisation
application developed before and described in article [19]
will be the next step of our research.
 The accuracy of such a mocap solution is not too high.
Maximum errors were over 30°. It is because of the low
processing power of such simple devices in comparison to
commercial mocap solutions which use more complicated
hardware and computation algorithms. Motion capture
quality may be leveraged by the application of multiple
capturing devices. The achieved results show that the use
of two Kinect devices results in better joint localisation and
better joint angle measurements and that the future
research should utilise multiple Kinect One devices.
 The quality of recorded motion may be additionally
improved by skeleton smoothing. This may be achieved
with the usage of different interpolation algorithms [20].

REFERENCES
[1] Kitagawa M., Windsor B., MoCap for Artists. Workflow and

Techniques for Motion Capture. Elsevier, 2008
[2] Menache A., Understanding Motion Capture for Computer

Animation and Video Games, Morgan Kaufmann, 2000
[3] Kopniak P., Budowa, zasada, działania i zastosowania systemu

rejestracji ruchu firmy Xsens, Logistyka, 2014, nr 3, 3049-3058
[4] Kopniak P., Java wrapper for Xsens motion capture system

SDK, Human System Interactions (HSI), 2014 7th International
Conference, Lisbon (Costa da Caparica), 06/2014

[5] Kopniak P., Pomiary kątów ugięcia kończyny w stawie z
wykorzystaniem inercyjnego systemu Motion Capture, Pomiary
Automatyka Kontrola, 60 (2014), nr 8, 590-593

[6] Kopniak P., The use of multiple cameras for motion capture,
Przegląd Elektrotechniczny, 90 (2014), nr 4, 173-176

[7] Kopniak P., Rejestracja ruchu za pomocą urządzenia Microsoft
Kinect, Pomiary Automatyka Kontrola, 58 (2012), nr 11, 1016-1018

[8] Kinect for Windows homepage: http://www.microsoft.com/en-
us/kinectforwindows/

[9] Schematic diagram of Kinect controller:
http://www.wired.com/magazine/wp-content/images/19-
07/mf_kinect2_f.jpg

[10] PrimeSense Supplies 3-D-Sensing Technology to “Project
Natal” for Xbox 360, http://www.microsoft.com/en-
us/news/press/2010/mar10/03-31PrimeSensePR.aspx

[11] PrimeSense Ltd. patents at Patentdocs:
http://www.faqs.org/patents/assignee/prime-sense-ltd/

[12] CL NUI Platform: http://codelaboratories.com/kb/nui
[13] OpenKinect project: http://openkinect.org/wiki/Main_Page
[14] OpenNI framework: http://www.openni.org/
[15] Barmpoutis A., Tensor Body: Real-time Reconstruction of the

Human Body and Avatar Synthesis from RGB-D, IEEE
Transactions on Cybernetics, Special issue on Computer
Vision for RGB-D Sensors: Kinect and Its Applications, October
2013, Vol. 43(5), 1347-1356

[16] Kinect for Windows homepage: http://www.microsoft.com/en-
us/kinectforwindows/

[17] NiTE middleware library: http://www.primesense.com/en/nite
[18] OpenNI/NiTE 2 Migration Guide – Transitioning from

OpenNI/NiTE 1.5 to OpenNI/NiTE 2, Document Version 1.1,
April 2013: http://www.openni.org/openni-migration-guide/

[19] Kinect for Windows SDK: http://www.microsoft.com/en-
us/kinectforwindows/develop/developer-downloads.aspx

[20] Smołka J., Skublewska-Paszkowska M., Analysis of selected
interpolation methods with artificial 3D data, Actual Problems of
Computer Science, 3 (2013), No. 1, 3-18

Author: dr inż. Piotr Kopniak, Politechnika Lubelska, Wydział
Elektrotechniki i Informatyki, Instytut Informatyki, ul. Nadbystrzycka
36B, 20-618 Lublin, E-mail: p.kopniak@pollub.pl

