AGH Akademia Górniczo-Hutnicza w Krakowie, Katedra Energoelektroniki i Automatyki Systemów Przetwarzania Energii

doi:10.15199/48.2015.08.43

Nagrzewnica indukcyjna prostopadłościenna. Sprawność, wzory na parametr tłumienia i dobroć.

Streszczenie. Wyprowadzono wzory na parametr elektryczny i dobroć prostopadłościennych pieców i nagrzewnic indukcyjnych dla wykonania wstępnych projektów inżynierskich.

Abstract. Formulas for electrical parameter and Q factor of cuboidal induction furnaces and heaters was obtained for preparation of initial engineering projects. (Cuboidal induction heater, formulas for parameter).

Słowa kluczowe: elektrotermia, nagrzewanie indukcyjne, parametry pieców i nagrzewnic indukcyjnych, piec tyglowy. **Keywords**: electroheat, induction heating, parameters of induction furnaces and heaters, crucible furnace.

Wstęp

Wyznaczenie parametrów nagrzewnic i pieców indukcyjnych na podstawie danych fizycznych jest często konieczne podczas zajmowania się tematyką nagrzewania indukcyjnego. W artykule wyprowadzono proste wzory dla często stosowanej prostopadłościennej nagrzewnicy indukcyjnej. Wzory także można zastosować do prostopadłościennych, tyglowych pieców indukcyjnych.

Wyznaczanie parametrów na podstawie danych fizycznych

Na podstawie danych fizycznych danej nagrzewnicy indukcyjnej czyli jej wymiarów geometrycznych i własności materiałowych możemy obliczyć jej różne parametry, np.: rezystancje, reaktancje a więc także współczynnik mocy, sprawność, dobroć. W artykule wyprowadzono proste wzory i są one dokładniejsze niż podane w literaturze [1].

Rozpatrywana prostopadłościenna nagrzewnica indukcyjna posiada wymiary geometryczne i własności materiałowe wzbudnika i wsadu oznaczone tak jak na rys.1.

Rys. 1. Konstrukcja (a) oraz elektryczny schemat zastępczy (b) prostopadłościennej nagrzewnicy indukcyjnej układu wzbudnik – wsad o bokach krótszych *D>d* i wysokościach *H>h* przy *z* - zwojowym wzbudniku i głębokości wnikania δ wsadu; μ , μ_o - przenikalności magnetyczne, ρ , ρ_1 -rezystywności, rezystancja zastępcza R_o i reaktancja zastępcza X_o

Dla przejrzystości tam gdzie było to możliwe wprowadzono proste bezindeksowe oznaczenia (podobnie jak Liwiński w [2]) w ten sposób, że duże litery dotyczą wzbudnika zaś małe – wsadu. Wtedy jednocześnie duża litera oznacza większy wymiar, czyli zakładamy H>h, D>d tak jak to widać na rysunku 1a.

Rezystancja zastępcza R_o i reaktancja zastępcza X_o (rys. 1) zależą także od częstotliwości f. Nagrzewnica

zasilana jest z generatora wielkościami i, u_o o częstotliwości f tak jak to pokazano na blokowo-ideowym schemacie na rys. 2.

schemat zastępczy

Rys. 2. Blokowo-ideowy schemat zasilania nagrzewnicy indukcyjnej z generatora o częstotliwości f

Najbardziej przydatne jest obliczenie parametrów elektrycznych nagrzewnicy rezystancji R_o i reaktancji X_o w celu wyznaczenia jej schematu zastępczego (rys. 1b) a następnie parametru tłumienia p związanego z dobrocią Q zależnością

$$(1) p = \frac{R_o}{2X_o} = \frac{1}{2Q}$$

W obliczeniach teoretycznych jest bardzo wiele wyprowadzonych wzorów zależnych tylko od jednego parametru *p* lub dobroci *Q* ponieważ skupiają one już w sobie naraz dwa parametry R_o i X_o . W literaturze elektrotermicznej [2-9] często są podawane wzory na R_o i X_o w przeciwieństwie do *p* lub dobroci *Q*. Dlatego w tym artykule wyprowadzono wzory na parametr *p*.

Najczęściej podawany wzór w literaturze na rezystancje R_o (rys. 1):

(2)
$$R_o = R_1 + R_w = \frac{R_w}{\eta} = 2(k+1)z^2 \frac{\rho d}{h\delta} \frac{F_r K_r}{\eta}$$

gdzie: R_1 – rezystancja wzbudnika, R_w – rezystancja wsadu, F_r – współczynnik kształtu wsadu prostopadłościennego (rys. 3), K_r – współczynnik korekcyjny (rys. 4), k – współczynnik boku dłuższego (rys. 1), η – sprawność elektryczna indukcyjnego układu grzejnego (4). Reaktancja X_o (rys. 1 i 2):

(3)
$$X_o \approx kz^2 \omega_o \mu_o \left(\frac{D^2}{H}K_N - \frac{d^2}{h}K_x\right)$$

gdzie: K_N – współczynnik Nagaoki (rys. 5), K_x – współczynnik korekcyjny (rys. 4), $\omega_a = 2\pi f$ to pulsacja.

Wzór (3) jest uproszczony aby dalsze wyprowadzenia i wzór końcowy nie były zbyt skomplikowane.

Współczynniki dla wsadu prostopadłościennego podane we wzorach (2) i (3) odpowiednio: kształtu F_r , korekcyjne K_r , K_x oraz Nagaoki K_N znajdują się na rysunkach nr od 3 do 5.

Współczynniki kształtu F_r wsadu prostopadłościennego w funkcji d/ δ wykreślono (na podstawie literatury [2,4,8]) na rysunku 3.

Rys. 3. Współczynniki kształtu F_r wsadu prostopadłościennego w funkcji d/ δ dla różnych wartości k boku dłuższego.

Współczynniki korekcyjne K_r , K_x wsadu prostopadłościennego w funkcji d/h dla różnych parametrów D/d wyznaczone wg [2] przedstawione są rysunku 4

Współczynnik Nagaoki K_N w funkcji D/H dla różnych wartości k boku dłuższego wg [4] przedstawiony jest na rysunku 5.

Rys. 5. Współczynnik Nagaoki $K_{\!N}$ dla wzbudnika o przekroju prostokątnym.

Sprawność

Sprawność elektryczna η indukcyjnego układu grzejnego wg [4,8] przy *D*>*d* i *H*>*h* (rys. 1) przedstawia wzór 4:

(4)
$$\eta = \frac{1}{1 + \frac{1}{F_r K_r k_w} \frac{D}{d} \frac{h}{H} \sqrt{\frac{\rho_1}{\mu_r \rho}}} = \frac{1}{1 + \frac{1}{F_r K_r k_w} \frac{D}{d} \frac{h}{H} \frac{\sqrt{\rho_1}}{k_p}}$$

gdzie: $k_p = \sqrt{\rho \mu_r}$ jest współczynnikiem pochłaniania energii pola elektromagnetycznego, k_w to współczynnik wypełnienia uzwojenia.

W literaturze rzadko występuje oznaczenie $k_p = \sqrt{\rho \mu_r}$ zwane współczynnikiem pochłaniania energii pola elektromagnetycznego wg [8] ponieważ ma wymiar oraz ma niewygodny zakres wartości. Dlatego wprowadzono oznaczenie bezwymiarowe $k_{pr} = \sqrt{\rho_r \mu_r}$ czyli względny współczynnik pochłaniania energii pola elektromagnetycznego poprzez wprowadzenie względnej oporności właściwej $\rho_r = \frac{\rho}{\rho_{Cu20}}$ (zaproponowany w

odniesieniu do miedzi przy 20 stopniach ^oC). Wartości tego współczynnika k_{pr} dla najczęściej używanych metali są obliczone w tabeli 1.

Tabela 1. Względny współczynnik k_{pr} pochłaniania energii pola elektromagnetycznego w funkcji temperatury dla różnych metali w odniesieniu do miedzi przy 20 °C.

Juniesieniu u	0 IIIIeu	Ζι μιζy Ζ	0 0.				
Temp.	1	Współc	zynnik	k_{pr} dla i	różnyc	h metal	i
°C	Cu	AI	Aq	Au	Sn	Stal	Stal
_						$\mu_r = 20$	$\mu_r = 100$
0	0,93	1,22	0,91	1,13	2,51	10,38	23,20
20	1,00	1,28	0,95	1,17	2,51	10,58	23,66
100	1,12	1,45	1,08	1,39	3,03	13,13	29,35
200	1,27	1,65	1,23	1,56	3,25	16,33	36,51
300	1,42	1,83	1,36	1,74	5,29	19,65	43,94
400	1,55	2,01	1,49	1,90	5,37	23,09	51,64
500	1,67	2,19	1,61	2,08	5,49	26,46	59,16
600	1,84	2,35	1,71	2,21	5,61	29,81	66,67
700	1,88	3,94	1,81	2,37	5,71	33,98	75,98
800	1,99	4,06	1,90	2,52	5,83	8,16	8,16
900	2,08	4,18	1,99	2,65	5,92	8,26	8,26
1000	2,16	4,25	3,28	2,79	6,03	8,26	8,26
1100	3,38	4,34	3,39	4,61	6,13	8,42	8,42
1200	3,44	4,44	3,49	4,71	6,24	8,47	8,47
Temp	4000	660	000	4062	222	ok.	ok.
topnienia °C	1083	000	900	1063	232	1500	1500

* Stal o niskiej zawartości węgla

Z tabeli 1 wynika, że metale posiadające własności magnetyczne posiadają największe wartości współczynnika $k_{p,}$ >10 z powodu dużych wartości przenikalności magnetycznej μ_r >>1. Stal posiada największe wartości tego współczynnika. Jednak powyżej punktu Curie powyżej ok. 750 °C wg [9] po utracie własności magnetycznych inne metale (zwłaszcza w stanie ciekłym) już nie wiele mniej od stali pochłaniają energię. Grubym drukiem zaznaczono dane: dla metali w stanie ciekłym zaś dla stali po utracie własności magnetycznych.

Uwzględniono, że wzbudnik jest trochę cieplejszy mimo że jest chłodzony i posiada do 60 °C. Wtedy wyrażenie we wzorze (4) ma postać $\sqrt{\mu_r \frac{\rho}{\rho_1}} = \frac{7}{8} k_{pr}$ oraz dając

współczynnik wypełnienia uzwojenia k_w = 8/10 otrzymujemy wzór na sprawność:

(5)
$$\eta = \frac{1}{1 + \frac{1}{F_r K_r} \cdot \frac{1}{\frac{8}{10}} \cdot \frac{D}{d} \frac{h}{H} \cdot \frac{1}{\frac{7}{8} \cdot k_{pr}}} = \frac{1}{1 + \frac{1}{0,7 \cdot F_r K_r k_{pr}} \cdot \frac{D}{H} \cdot \frac{h}{d}}$$

którego przebiegi znajdują się na rysunku 6 w funkcji d/h dla różnych wartości k_{pr}, D/d, D/H przy przyjęciu wartości $F_r = 0.9$ (rys. 3)

Rys. 6. Sprawność nagrzewnicy w funkcji d/h dla różnych parametrów ${\rm k}_{\rm pr}$, D/d i D/H przy przyjęciu wartości $F_r=0,9$

Wzory na parametr tłumienia i dobroć

Po wstawieniu wzoru (2) i (3) do (1) wyprowadzono wzór na parametr p nagrzewnicy indukcyjnej:

(6)
$$p = \frac{R_w}{2\eta X_o} = \frac{2(k+1)z^2 \frac{\rho d}{h\delta} \frac{F_r K_r}{\eta}}{kz^2 \omega_o \mu_o \left(\frac{D^2}{H} K_N - \frac{d^2}{h} K_x\right)} = \frac{2\left(1 + \frac{1}{k}\right) \frac{\rho d}{\delta} \frac{F_r K_r}{\eta}}{\omega_o \mu_o D^2 \left[\frac{h}{H} K_N - \left(\frac{d}{D}\right)^2 K_x\right]}$$

Na podstawie przekształcenia wzoru (5) mamy zależność

(7)
$$\frac{F_r K_r}{\eta} = F_r K_r + \frac{D}{d} \frac{h}{H} \cdot \frac{1}{0,7 \cdot k_{pr}}$$

Po wstawieniu wyrażeń (7) do (6) otrzymuje się wzór

(8)
$$p = \frac{2\frac{\rho d}{\delta} \left(1 + \frac{1}{k}\right) \left(F_r K_r + \frac{D}{d} \frac{h}{H} \cdot \frac{1}{0, 7 \cdot k_{pr}}\right)}{\omega_o \mu_o D^2 \left[\frac{h}{H} K_N - \left(\frac{d}{D}\right)^2 K_x\right]}$$

Po wstawieniu $\delta^2 = \frac{2\rho}{\omega_o \mu_o \mu_r}$ do wzoru (8) otrzymamy

(9)
$$p = \frac{\delta \mu_r \left(1 + \frac{1}{k}\right) \left(\frac{d}{D} F_r K_r + \frac{h}{H} \cdot \frac{1}{0.7 \cdot k_{pr}}\right)}{D \left[\frac{h}{H} K_N - \left(\frac{d}{D}\right)^2 K_x\right]}$$

gdzie

(10)
$$\delta\mu_r = \frac{k_{pr}}{\sqrt{\frac{\pi\mu_o}{\rho_{Cu}}}\sqrt{f}} \approx \frac{k_{pr}}{15\sqrt{f}}$$

uwzględniając wyrażenie (10) we wzorze (9) otrzymujemy wzór końcowy

(11)
$$p = \frac{0.1}{D\sqrt{f}} \cdot \frac{\left(1 + \frac{1}{k}\right) \left(\frac{2}{3} \frac{H}{h} \frac{d}{D} k_{pr} F_r K_r + 1\right)}{K_N - \frac{H}{h} \left(\frac{d}{D}\right)^2 K_x}$$

Widać z niego, że parametr *p* nagrzewnicy zależy od d/h i rośnie ze wzrostem współczynników k_{pr} , F_r oraz wymiarów d/D, H/h, D/H jak i $D\sqrt{f}$. Wzór (11) można przekształcić aby nie stosować tak wielu parametrów. Czyli po rezygnacji z parametru H/h oraz przy przyjęciu wartości F_r bliskiej jedności dla różnych wartości k (rys. 3) pod warunkiem zasilania odpowiednio dużą częstotliwością f (rys. 2) otrzymamy:

(12)
$$p = \frac{0,1}{D\sqrt{f}} \cdot \frac{\left(1 + \frac{1}{k}\right) \left(0,66 \cdot k_{pr}K_r \frac{d}{h} + \frac{D}{H}\right)}{K_N \frac{D}{H} - \frac{d}{D}K_x \frac{d}{h}}$$

Ponieważ współczynniki K_r , K_x są funkcją d/h (rys. 4) dlatego wzór (12) uproszczono:

(13)
$$p = \frac{1 + \frac{1}{k}}{10 \cdot D\sqrt{f}} \cdot \frac{\frac{D}{H} + 0.66 \cdot \sqrt{\rho_r \mu_r} K'_r}{\frac{D}{H} K_N - \frac{d}{D} K'_x}$$

gdzie nowe współczynniki K'_r , K'_x są pomnożone o ich argument czyli:

(14)
$$K'_r = K_r \frac{d}{h}, K'_x = K_x \frac{d}{h}$$

Ze wzoru 13 dodatkowo widać, że parametr p nagrzewnicy rośnie ze wzrostem $\rho_r \mu_r$ i zależy od wymiarów wsadu d/h dla

rozpatrywanego przedziału
$$d/_{h} \in (0,2)$$
.

Wzór na dobroć wg (1) wynosi:

$$(15) \qquad Q = \frac{1}{2p}$$

Wpływ prądu odkształconego na zmiany parametrów

W przypadku, gdy prąd "i" (rys. 2) jest odkształcony z powodu nieliniowości magnetycznej wsadu lub wpływu odkształcenia sygnału zasilającego następuje zmiana parametrów R_o , X_o do wartości R_{on} , X_{on} na podstawie [10]:

(16)
$$\frac{R_{on}}{R_o} = \frac{\sum_{n=1}^{\infty} \sqrt{nI_n^2}}{I^2}; \qquad \frac{X_{on}}{X_o} = \frac{\sum_{n=1}^{\infty} \sqrt{nI_n^2}}{I^2}$$

gdzie: R_{on} , X_{on} - rezystancja, reaktancja odbiornika indukcyjnego przez który płynie prąd odkształcony, R_o , X_o rezystancja, reaktancja odbiornika indukcyjnego przez który płynie prąd sinusoidalny, I_n - n-ta harmoniczna wartości skutecznej prądu odbiornika, I - wartość skuteczna prądu iodbiornika,

przy założeniu, że współczynnik kształtu F_r wynosi prawie 1 dla różnych wartości k (rys. 3) i dla pierwszej harmonicznej, czyli mało znacząco wzrasta dla wyższych harmonicznych.

Na podstawie wzorów (16) parametr tłumienia p oraz dobroć Q (1) zmieniają się wg wzoru:

(17)
$$\frac{p_n}{p} = \frac{1}{\frac{Q_n}{Q}} = \frac{\sum_{n=1}^{\infty} \sqrt{n}{I_n}^2}{\sum_{n=1}^{\infty} n{I_n}^2} = \frac{1 + \sum_{n=2}^{\infty} \sqrt{n} \left(\frac{I_n}{I_1}\right)^2}{1 + \sum_{n=2}^{\infty} n \left(\frac{I_n}{I_1}\right)^2}$$

Gdzie: p_n , Q_n - parametr tłumienia, dobroć odbiornika indukcyjnego przez który płynie prąd odkształcony, p, Q - parametr tłumienia, dobroć odbiornika indukcyjnego przez który płynie prąd sinusoidalny.

Wzory (16), (17) są ważne dla dowolnego prądu odkształconego "*i*" płynącego przez nagrzewnicę (rys. 2). Dany prąd odkształcony wcześniej trzeba poddać analizie Fouriera w celu wyznaczenia *n* - tych harmonicznych prądu.

Na podstawie literatury [10] w tabeli 2 zestawiono

wartości $\frac{I_n}{I_1}$, oraz obliczonych wg wzoru (17) wartości

 $\frac{p_n}{p}$ i $\frac{Q_n}{Q}$ dla wybranych kształtów przebiegów często

spotykanych prądów odkształconych.

Tabela	2.	Wart	tości	$\frac{I_n}{I_1}$,	$\frac{p_n}{p}$	·, <u> </u>	$\frac{2n}{Q}$ dl	la	wybranych	kształtów
przebie	góv	v częs	sto sp	ootyka	anych	prąd	ów odł	ksz	ztałconych	

 $\mathbf{\Omega}$

Kształt przebiegu prądu odkształconego <i>i</i>		llorazy $\frac{I_n}{I_1}$ <i>n</i> -tych harmonicznych							p_n	Q_n
		2	3	4	5	6	7	9	р	Q
trójkąt	1		0,11		0,04		0,02		0,98	1,02
trapez	1		0,22		0,04		0,02		0,94	1,06
prostokąt			0,33		0,20		0,14		0,80	1,26
falownik szeregowy	1		0,60		0,15		0,07		0,76	1,32
mostek 2-pulsowy	1	0,2	0,07	0,05	0,03	0,02	0,02	0,01	0,96	1,04
histereza z pamięcią			0,26		0,05				0,92	1,08
mostek 6-pulsowy	1						0,23	0,17	0,76	1,32
histereza	1		0,13		0,05		0,03		0,97	1,03
sinusoida	1								1,00	1,00

Ciekawy jest przykład stanu pracy falownika szeregowego wg tabeli 2 dotyczący układów podanych w [10], [11] i [12]. Przykład dotyczy falownika, którego łączniki są zbocznikowane przeciwsobnie diodami prądu wstecznego przy kącie przewodzenia tych diod równym π (maksymalny kąt przewodzenia diod). W takim punkcie pracy występują największe wartości wyższych harmonicznych co powoduje ponad 30% zmianę wartości parametru p oraz dobroci Q.

Wnioski

Wyprowadzone wzory są wiele prostsze niż dostępne w literaturze (przykładowo [13], [14], [15] [16], [17], [18]). Są w pewnym stopniu uproszczone ale prawidłowe dla wykonania szybkich przeliczeń i wstępnych projektów inżynierskich. Ponadto mają wartość dydaktyczną dla wykładowców i studentów ponieważ ze wzoru widać bezpośrednio jak parametr tłumienia zależy od wymiarów i współczynników nagrzewnicy indukcyjnej z rys.1 oraz częstotliwości jej zasilania wg rys.2.

W rzeczywistości, gdy przez odbiornik płynie prąd odkształcony, zmieniają się jego parametry tłumienia i dobroć nawet o 30 % zgodnie z tabelą 2.

LITERATURA

- Kieroński R., Uproszczenie wzorów na parametry cylindrycznych pieców i nagrzewnic indukcyjnych zasilanych z falownika, *Elektrotechnika i Elektronika*, 26 (2007), nr 1-2, 37-39
- [2] Liwiński W., Nagrzewnice indukcyjne skrośne, WNT, (1968)
- [3] Hauser J., Elektrotechnika. Podstawy elektrotermii i techniki świetlnej, Wydawnictwo Politechniki Poznańskiej, (2006)
- [4] Hering M., Podstawy elektrotermii cz. II, WNT, (1998)
- [5] Hering M., Poradnik inżyniera elektryka, T.1, Elektrotermia, WNT, (2009)
- [6] Novak P., Elektricke Teplo, Vydala Equilibria, (2010)
- [7] Rodacki T., Kandyba A., Urządzenia elektrotermiczne, Wydawnictwo Politechniki Śląskiej, (2002)
- [8] Sajdak C., Samek E., Nagrzewanie indukcyjne, Wyd. Śląsk, (1985)
- [9] Turowski J., Elektrodynamika techniczna, WNT, (1968)
- [10] Kieroński R., Wpływ prądu odkształconego na parametry nagrzewania indukcyjnego przy zasilaniu różnymi źródłami częstotliwości, *Elektrotechnika i Elektronika*, 27 (2008), nr 2, 84–93
- [11] Kurbiel A., Kieroński R., Dwutyrystorowy falownik napięcia do nagrzewania indukcyjnego, *Przegląd Elektrotechniczny*, 69 (1993), nr 3, 56-59
- [12] Zgraja J., Wpływ wyższych harmonicznych na dokładność symulacji indukcyjnego układu grzejnego z falownikiem szeregowym. Przegląd Elektrotechniczny, 84 (2008), nr 7, 83-85
- [13] Kurek K., Niklewicz M., Ocena przydatności nagrzewania indukcyjnego w procesie hartowania kół zębatych, *Przegląd Elektrotechniczny*, 84 (2008), nr 7, 86-88
- [14] Kurek K., Smalcerz A., Badanie ekranów wielowarstwowych tłumiących pole magnetyczne wokół nagrzewnic indukcyjnych, Przegląd Elektrotechniczny, 84 (2008), nr 7, 89-91
- [15] Przyłucki R., Kachel A., Model obliczeniowy indukcyjnego układu grzejnego z uwzględnieniem radiacyjnej wymiany ciepła, *Przegląd Elektrotechniczny*, 84 (2008), nr 7, 94-96
- [16] Wciślik M., Kwaśniewski T., Indukcyjność cewki jednowarstwowej. Wzory analityczne, Przegląd Elektrotechniczny, 84 (2008), nr 7, 103-106
- [17] Barglik J., Wieczorek T., Smalcerz A., Modeling of the surface induction hardening process, *Przegląd Elektrotechniczny*, 90 (2014), nr 2, 1-4
- [18] Wesołowski M., Niedbała R., Dwuwzbudnikowa nagrzewnica indukcyjna do krystalizacji metodą PVT – koncepcja i symulacja, Przegląd Elektrotechniczny, 90 (2014), nr 2, 36-39

Autor: dr inż. Roman Kieroński, AGH Akademia Górniczo-Hutnicza w Krakowie, Katedra Energoelektroniki i Automatyki Systemów Przetwarzania Energii, al. A. Mickiewicza 30, 30–059 Kraków, Email: <u>kieronsk@kaniup.aqh.edu.pl</u>