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Currents’ Physical Components (CPC) in Four-Wire Systems 
with Nonsinusoidal Symmetrical Voltage 

 
Abstract. Energy flow related phenomena in three-phase systems with neutral conductor and unbalanced, linear, time-invariant (LTI) loads, supplied 
with nonsinusoidal, but symmetrical voltage are investigated in the paper. It is demonstrated that the load current can be decomposed into Currents’ 
Physical Components (CPC), associated with distinctive physical phenomena in the load. It is also shown how the CPC can be expressed in terms 
of the supply voltage and equivalent parameters of the load. This decomposition provides solid fundamentals for defining powers of such loads. 

Streszczenie. Artykuł przedstawia wyniki badań nad zjawiskami energetycznymi w liniowych, czasowo-niezmienniczych (LTI) odbiornikach 
niezrównoważonych, zasilanych niesinusoidalnym lecz symetrycznym napięciem w układach trójfazowych z przewodnikiem neutralnym. Pokazano, 
że prąd zasilania takich odbiorników może być rozłożony na Składowe Fizyczne, jednoznacznie stowarzyszone z określonymi zjawiskami 
fizycznymi. Pokazano także, że prądy te mogą być określone poprzez napięcie zasilania i parametry równoważne odbiornika. Rozkład ten tworzy 
solidne podstawy dla definicji mocy takich odbiorników. (Składowe Fizyczne Prądów w  obwodach trójfazowych z przewodem zerowym i 
niesinusoidalnym lecz symetrycznym napięciem zasilania). 
 
Keywords: Current decomposition, unbalanced loads, asymmetrical systems, power definitions, power theory.  
Słowa kluczowe: Rozkład prądu, odbiorniki niezrównoważone, systemy niesymetryczne, definicje mocy, teoria mocy.  
 

 
Introduction 

The Steinmetz observation [1] in 1892 that the apparent 
power S in a circuit with nonsinusoidal current could be 
higher than the active power P, at zero reactive power Q, 
does not have explanation for all circuit situations even 
now, more than a hundred years later. The inequality S > P 
has important technical and economic consequences: the 
bill for energy delivered is related to the load active power 
P, while the cost of this energy including the cost of its 
delivery and the cost of the transmission equipment is 
related to the apparent power S.  

This inequality at nonsinusoidal voltages and currents 
can be explained in terms of powers for single-phase loads 
[10] and for three-phase, three-wire loads [12], but not for 
three-phase loads with a neutral conductor. As to authors’ 
best knowledge, the power equation of three-phase loads 
with neutral conductor at nonsinusoidal supply voltage is 
not yet known.  

Three-phase systems with a neutral conductor are the 
most common systems for the energy distribution to small 
and to medium power customers. Studies on description of 
such systems in terms of powers have therefore a long 
history [2-9, 11-16].  

There are two main reasons for the lack of a right power 
equation for such systems at nonsinusoidal supply voltage. 
The first of them is the fact that it was not possible to 
develop a power equation for three-phase systems before 
such an equation was developed for single-phase systems. 
This obstacle was eventually removed in [10]. The second 
reason was the lack of the right definition of the apparent 
power S for three-phase systems. Definition of arithmetic 
and geometric apparent powers, introduced by the AIEE in 
[3], did not provide fundamentals for the power equation 
development. This obstacle was eventually removed in [12], 
where a new definition of the apparent power for three-
phase systems with nonsinusoidal voltages and currents 
was introduced. 

The Currents’ Physical Components (CPC) concept is 
the main theoretical tool in this paper for describing three-
phase linear, time-invariant (LTI) unbalanced loads in three-
phase systems with neutral conductor, supplied with non-
sinusoidal, but symmetrical voltage, in terms of powers. 

According to the CPC concept of the power theory 
development, fundamental for this development is decom-

position of the load current into orthogonal components 
associated with distinctive energy flow-related phenomena. 
Power definitions are secondary to this decomposition. The 
original Steinmetz question: why can the apparent power 
S be higher than the active power P? can be simplified to 
the question: why can the supply current rms value be 
higher than the rms value of the current needed to 
supply the load with power P?  

This paper is continuation of [16], where a solution of 
the problem was presented, but at the assumption that the 
supply voltage was sinusoidal.  

Line-to-neutral admittances of the load 
Even if the power properties of the load can be specified 

based on the knowledge of the load structure and its para-
meters, power theories attempt to specify them based on 
measurements of voltages and currents at the load termi-
nals. The load should be described in terms of powers or 
CPC independently on the load complexity and parame-
ters. In the case of three-phase load supplied in a three-
phase system with neutral, as shown in Fig. 1, three line-to-
neutral conductor voltages uR(t), uS(t), uT(t) and three line 
currents iR(t), iS(t), iT(t) are the input data.  

 

Fig.1. Three-phase LTI load supplied in a system with neutral 
conductor. 
 

We assume that all these quantities, denoted generally 
by x(t), are periodic and can be expressed in terms of their 
harmonics xn(t)  
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is the complex rms (crms) value of the nth order harmonic. 
Modern measurement instruments calculate these values 
digitally. Instead of using (2), they process samples of volta-
ges or currents xk, provided by voltage or current sensors 
and analog to digital (A/D) converters. Such digital instru-
ments can calculate the crms values Xn using Discrete 
Fourier Transform (DFT), namely 
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where K denotes the number of samples in one period T of 
the supply voltage variability.  
 Symbols u and i in Fig. 1 denote three-phase vectors of 
line-to-neutral voltages and line currents, namely 
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Having crms values of the load voltage and current har-
monics, URn, USn, UTn, IRn, ISn, and ITn, equivalent line-to-  
neutral admittances can be calculated 
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In such a way, an equivalent circuit of the load for each 
order harmonic, as it is shown in Fig. 2, can be found. 

 

Fig. 2. Equivalent circuit of the load for the nth order harmonic. 

The load current decomposition 
With respect to the active power P at the voltage u, the 

load is equivalent to a purely resistive balanced load of 
conductance 
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referred to as an equivalent conductance of the load. The 
equivalent load is shown in Fig. 3. Such an equivalent resis-
tive and balanced load draws the current referred to as an 
active current. 
It is the current proportional to the supply voltage 
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and the minimum three-phase rms value needed to supply 
the load with the active power P at the supply voltage u.  

 
Fig. 3. Resistive balanced load equivalent to the original load with 
respect to its active power P. 
 
This rms value is equal to  
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 With respect to the active power of the nth order harmo-
nic Pn the load in Fig. 2 is equivalent to a balanced resistive 
load, shown in Fig. 4, 

 

Fig. 4. Resistive load equivalent to the original load 
with respect to its active power Pn of the n

th
 order harmonic. 

of conductance Gen equal to 
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Such a circuit draws the current  
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 With respect to the reactive power of the nth order har-
monic Qn the load in Fig. 2 is equivalent to a balanced 
reactive load, shown in Fig. 5, 

 

Fig. 5. Reactive load equivalent to the original load with respect to 
its reactive power Qn of the n

th
 order harmonic. 

 
of susceptance Ben equal to 
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Such a circuit draws the current  
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When the load is unbalanced, then the nth order current 
harmonic contains moreover an unbalanced current 



50                                                                                 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 6/2015 

(16)                         u a rn n n n  i i i i . 

Since the nth order current harmonic of the equivalent 
circuit in Fig. 2 can be expressed in terms of equivalent 
admittances as follows 
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the unbalanced current of the nth order harmonic can be 
expressed in terms of the load equivalent parameters as 
follows 
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This current can be asymmetrical, so that it can be decom-
posed into symmetrical components of the positive, nega-
tive and the zero sequences, namely 
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The crms values of these components are equal to  
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are coefficients of rotation on the complex plane.  
 When harmonics of line R, S and T voltages are sym-
metrical, then they have the positive, negative or the zero 
sequence. The crms values of the voltage harmonics of 
lines S and T can be expressed in terms of the crms value 
URn of the voltage harmonic on line R and  coefficient. 
 For harmonics of the positive sequence order, n = 1, 4, 
7, 10…, in general, n = 3k+1, k = 0, 1, 2… 

USn = * URn,    UTn =  URn. 
 For harmonics of the negative sequence order, n = 2, 5, 
8, 11…., in general, n = 3k1 

USn =  URn,    UTn = * URn. 
 For harmonics of the zero sequence order, n = 0, 3, 6, 
9, 12…., in general, n = 3k 

USn = URn,    UTn = URn. 
 These three sets of relations for crms values of the 
positive, negative and the zero sequence symmetrical har-
monics can be superseded by a single one, using rotation 
coefficient defined as follows  
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With this coefficient, independently on the harmonic order 

(22)                 USn =  URn,        UTn = * URn 

 With (22), formula (20) for crms values of symmetrical 
components of the unbalanced current of the nth order har-
monic can be rearranged to the form 
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Symbols u
z
nY , p

u nY  and n
u nY  on the right side of (23) 

denote unbalance admittances of the load of the zero, 
positive and negative sequence for the nth order harmonic. 
These admittances have the following general forms  
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Since the coefficient  depends, according to its definition 
(21), on the harmonic sequence, these admittances depend 
on the sequence as well. Namely: for harmonics of the zero 
sequence 
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for harmonics of the positive sequence 
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for harmonics of the negative sequence 
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Observe that harmonics of specified sequence have zero 
unbalanced admittance for just this sequence. For harmo-
nics of the zero sequence u 0z

nY  , for positive sequence 
p

u 0nY  and for the negative sequence n
u 0nY  . 

 To describe symmetrical components of the unbalanced 
current iun of the nth order harmonic, given by (19), in more 
explicit form related to the supply voltage harmonics, let us 
introduce symmetrical three-phase unit vectors:  
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Symmetrical components of different sequence are 
mutually orthogonal, so that the three-phase rms values of 
the components of the unbalanced current iun have to sati-
sfy the relation 

(30)                   2 p 2 n 2 z 2
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Three-phase rms values of symmetrical quantities are by 
root of three higher than the line rms values, hence 
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 When (16) and (19) are combined, the following decom-
position of the load nth order current harmonic is obtained 
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Observe that the first term on the right side of (35) is not 
the active current ia defined by (11), however. It can be 
rearranged to the form 
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The first term on the right side of (36) is the active current of 
the load as defined by (10). The second term,  
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which occurs when equivalent conductances of the load for 
harmonic frequencies Gen differ from the load equivalent 
conductance Ge. It will be called the scattered current. The 
presence of such a current was revealed [10] for the first 
time in single-phase circuits with LTI loads and nonsinusoi-
dal supply voltage. 
 Combining (36) and (37) with (35), the following decom-
position of the current of three-phase unbalanced loads is 
obtained 
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is the reactive current of the load, 
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is the unbalanced current of the positive sequence, 
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is the unbalanced current of the negative sequence 
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is the unbalanced current of the zero sequence. 

 The load current components in decomposition (38) are 
associated with distinctive phenomena in the circuit. The 
active current ia is associated with permanent flow of 
energy to the load; the scattered current is is associated 
with the change of the load equivalent conductance Gen with 
harmonic order n; the reactive current is associated with the 
phase shift between the voltage and current harmonics. 
Unbalanced currents p

u ,i n
ui  and z

ui are associated with 
asymmetry of the load current harmonics and consequently, 
with the presence of the positive, negative and zero sequ-
ence components of the unbalanced current.  

Orthogonality 
 The three-phase rms value of the active current is given 
by (11), while for the remaining components, defined as a 
sum of terms, harmonic-by-harmonic, of the order n from 
the set N, the three-phase rms value, can be calculated 
directly, because harmonics of different orders are mutually 
orthogonal. All these components are symmetrical, thus, to 
calculate their three-phase rms value it is enough to multiply 
the root of the sum of squares of their line rms values by the 
root of three, namely 

(43)                   2 2
s e e R|| || 3 ( )n n

n N

G G U


 i  

(44)                   2 2
r e R|| || 3 n n

n N

B U


 i  

(45)                   p p 2 2
u u R|| || 3 ( )n n

n N

Y U


 i  

(46)                   n n 2 2
u u R|| || 3 ( )n n

n N

Y U


 i  

(47)                   z z 2 2
u u R|| || 3 ( )n n

n N

Y U


 i . 

 The three-phase rms value of the load current satisfies 
the relation  

(48)      2 2 2 2 p 2 n 2 z 2
a s r u u u|| || = || || + || || +|| || + || || + || || + || ||i  i i i i i i  

on the condition that scalar products of all components in 
(38) are mutually orthogonal.  
 The scalar product of three-phase vectors x(t) and y(t) is 
defined as 

(49)                     T
df

0

1( ) ( ) ( )
T

, t t dt
T

 x y x y  

and can be calculated having vectors Xn and Yn of crms 
values of harmonics of x(t) and y(t) as 

(50)                      T *( ) Re n n
n N

,


 x y X Y . 

Three phase vectors x(t) and y(t) are mutually orthogonal 
on the condition that their scalar product is zero, i.e.,     

(51)                      T *( ) Re 0n n
n N

,


 x y X Y . 

Thus, to prove that (48) is valid, it has to be proven that 15 
scalar products of six components in (38) are equal to zero. 
 Let us calculate the scalar product 

(52)      

T T
a s a s e e

2 2
e

*
e

e e e

( , ) = Re Re ( )

 ( || || || || ) ( ) = 0.

*
n n n n n

n N n N

n n n
n N n N

G G G

G G G G P P

 

 

  

   

 
 

i i

u u

I I U U
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thus the active and the scattered currents are mutually 
orthogonal. 
 The active and the reactive currents are mutually ortho-
gonal because they are composed of only components 
shifted mutually by /2. Indeed 

(53)        

T T
a r a r e

2
e

*
e

e

( , ) = Re Re ( )

          Re ( )|| || 0

*
n n n n n

n N n N

n n
n N

G jB

G jB .

 



  

  

 


i i

u

I I U U
 

The same applies to the scattered and the reactive 
currents, so that  

(54)                                  s r( , ) = 0.i i  

The unbalanced currents p n
u u , i i and z

ui are mutually ortho-

gonal because they are of difference sequence, thus  

(55)                   p n p z n z
u u u u u u( , ) = ( , ) = ( , ) = 0i i i i i i . 

 The active, scattered and the reactive currents can con-
tain harmonics of all sequence thus, their orthogonality to 
unbalanced currents p n

u u , i i and z
ui remains unclear.  

 Let us observe that for the supply voltage harmonics of 
the positive sequence the unbalanced current, according to 
(26), can contain only components of the negative and zero 
sequence, thus they are orthogonal to the active, scattered 
and the reactive currents. For the voltage harmonics of the 
negative sequence the unbalanced current, according to 
(27), can contain only components of the zero and positive 
sequence, thus they are orthogonal to the active, scattered 
and the reactive currents. Finally, for the voltage harmonics 
of the zero sequence, the unbalanced current, according to 
(25), can contain only components of the positive and 
negative sequence, thus they are also orthogonal to the 
active, scattered and the reactive currents. It means that the 
active, scattered and the reactive currents ia, is and ir are 
orthogonal to unbalanced currents p n

u u , i i and z
u .i  It means 

that all components of decomposition (38) are mutually 
orthogonal and the relationship (48) between their three-
phase rms value is valid. Thus (38) can be regarded as a 
decomposition of the load current into the Currents’ 
Physical Components (CPC). Each component is associa-
ted with a physical phenomenon observable at the load 
terminals, and they are mutually orthogonal, meaning they 
contribute to the load current three-phase rms value inde-
pendently on each other. 

 

Fig. 6. Diagram of three-phase rms values of CPC. 

The relationship (48) can be illustrated, with a polygon 
shown in Fig. 6, with side length proportional to the three-
phase rms values of individual components of the load 
current.  
 Orthogonality of six components cannot be illustrated, of  

course, on a plane. Only two sides can be drawn on a plane 
as orthogonal and these are only two first terms on the right 
side of (48). Its sequence can be changed, without affecting 
the length of diagonal, meaning ||i||, however. 

Illustration. Let us assume that the load shown in Fig. 7 
is supplied with a symmetrical voltage of the fundamental 
harmonic rms value U1 = 240 V, distorted with the 3rd, 5th 
and 7th order harmonics of relative rms value U3 = 2% U1, 
U5 = 3% U1 and U7 = 1.5% U1, thus N = {1, 3, 5, 7}. 

  
Fig. 7. Example of unbalanced load. 

The rms values of the line-to-neutral voltage harmonics 
and the load admittances are compiled in Table1.  

Table 1. Rms values of voltage harmonics and load admittance 

n Un [V] SnY = GSn+jBSn [S] 

1 240 0.5 
3 4.8 0.1+j1.2 
5 7.2 0.0385+j2.308 
7 3.6 0.02+j3.36 

The active power of the load is 

2
S S 28 804 kWn n

n N

P G U .


   . 

The supply voltage three rms value 

2 2|| || = 3 416 01Vn n
n N n N

U .
 

   u  u  

thus the equivalent conductance of the load is 

e 2
0 165 S

|| ||
PG .  

u
 

and the three-phase rms value of the active current is 

a e|| || = || || 69 22 A
|| ||

PG .  i u
u

. 

The values of equivalent conductance Gen, susceptance 
Ben, and magnitude of unbalanced admittances p

u nY , n
u nY

and z
u nY for harmonic frequencies, calculated according to 

(12), (14) and (25-27), are compiled in Table 2. 

Table 2. Equivalent parameters of the load for harmonics 

n Gen[S]  Ben[S] 
p

u nY [S] n
u nY [S] z

u nY [S] 

1 0.167 0 0 0.167 0.167 

3 0.033 0.400 0.401 0.401 0 

5 0.013 0.769 0.769 0 0.769 

7 0.007 1.120 0 1.12 1.12 

The three-phase rms value of the scattered current, calcu-
lated with (43) is 

2
s e e|| || = 3 [( ) ] 2 43 An n

n N

G G U .


  i  

and the reactive current, calculated with (44) 

2
r e|| || = 3 ( ) 12 32 A.n n

n N

B U .


 i  
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The three-phase rms values of the unbalanced current com-
ponents calculated with (45-47) are equal to 

p p 2
u u|| || = 3 ( ) 10 16 An n

n N

Y U .


 i  

n n 2
u u|| || = 3 ( ) 69 71An n

n N

Y U .


 i  

z z 2
u u|| || = 3 ( ) 70 29 An n

n N

Y U .


 i  

and consequently, the three-phase rms value of the unba-
lanced current is 

p 2 n 2 z 2
u u u u|| || = || || || || || || 99 52 A.   i i i i . 

The three-phase rms value of the load current, calcu-
lated as the root of sum of squares of rms values of the line 
currents, is 

2 2 2 2
R S T S|| || || || || || || || ( ) 121 88 An n

n N

i i i Y U .


     i . 

This value can be used for verification of the decomposition 
of the load current into the active, scattered, reactive and 
the unbalanced currents, since the root of the sum of 
squares their three-phase rms values should result in the 
same value of ||i||. Indeed  

2 2 2 2
a s r u|| || = || || + || || || || || || 121 88 A.    i i i i i  

which confirms numerical correctness of the load current 
decomposition (38).  

Powers 
 Developed above the load current decomposition into 
the Currents’ Physical Components in four-wire systems 
with nonsinusoidal supply voltage provides straightforward 
explanation for the Steinmetz observation that the apparent 
power S at nonsinusoidal conditions can be higher than the 
active power P. That observation, raised originally in single-
phase circuits with an electric arc, applies of course to sys-
tems of any complexity.  
 For systems analyzed in this paper, after multiplying 
(38) by the square of the three-phase rms value of the sup-
ply voltage ||u||, the difference in square between the 
apparent power S and the active power P is equal to 

(56)                p n z2 2 2 2 2 2 2
s u u uS P D Q D D D      . 

All powers on the right side of (56), namely, the scattered 
power: 

(57)                              
df

s s|| || || ||,D  u i  

the reactive power: 

(58)                              
df

r|| |||| ||,Q  u i  

the unbalanced power of the positive sequence: 

(59)                              
df

p p
u u|| || || ||,D  u i  

the unbalanced power of the negative sequence: 

(60)                              
df

n n
u u|| || || ||,D  u i  

and the unbalanced power of the zero sequence: 

(61)                              
df

z z
u u|| || || ||,D  u i  

are only formal products, like the apparent power S, of the 
supply voltage and CPC three-phase rms values. 

 Nonetheless, since these powers are associated with 
distinctive phenomena in the load and the load properties, 
eqn. (56) provides quantitative explanation for the question 
of why the apparent power S in four-wire systems with LTI 
loads and nonsinusoidal supply voltage can be higher than 
the active power P. 

Conclusions 
 The paper provides explanation of power properties of 
linear time-invariant loads supplied with nonsinusoidal 
voltage in three-phase systems with a neutral conductor. It 
demonstrates that the load current can be decomposed into 
mutually orthogonal components associated with distinctive 
physical phenomena. This decomposition is based on the 
voltage and current measurement on the load terminals. 
The current components can be expressed in terms of 
measurable parameters of the load. This decomposition 
enables development of the power equation of three-phase 
LTI loads in four-wire systems with nonsinusoidal supply 
voltage. 
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