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Currents’ Physical Components (CPC) 
in Three-Phase Systems with Asymmetrical Voltage 

 
 

Abstract. Energy flow related phenomena in three-phase unbalanced, linear, time-invariant (LTI) loads, supplied with asymmetrical, but sinusoidal 
voltage, in three-wire systems, are investigated in the paper. It is demonstrated that the load current can be decomposed into Currents’ Physical 
Components (CPC), associated with distinctive physical phenomena in the load. It is also shown how the CPC can be expressed in terms of the 
supply voltage and equivalent parameters of the load. An equivalent circuit of LTI loads at asymmetrical, but sinusoidal supply voltage is presented 
as well. This decomposition provides solid fundamentals for defining powers of such loads. 
 
Streszczenie. Artykuł przedstawia wyniki badań nad zjawiskami energetycznymi w liniowych, czasowo-niezmienniczych (LTI) odbiornikach 
niezrównoważonych, zasilanych niesymetrycznym, lecz sinusoidalnym napięciem w obwodach trójprzewodowych. Pokazano, że prąd takich 
odbiorników może być rozłożony na Składowe Fizyczne, jednoznacznie stowarzyszone z określonymi zjawiskami fizycznymi. Pokazano także, że 
prądy te mogą być określone poprzez napięcie zasilania i parametry równoważne odbiornika. Przedstawiono także obwód równoważny 
niezrównoważonych odbiorników LTI, zasilanych niesymmetrycznym, lecz sinusoidalnym napięciem. Rozkład ten tworzy solidne podstawy dla 
definicji mocy takich odbiorników. (Składowe Fizyczne Prądów w obwodach trójfazowych z niesymetrycznym napięciem zasilania). 
 
Keywords: Current decomposition, unbalanced loads, asymmetrical systems, power definitions, power theory.  
Słowa kluczowe: Rozkład prądu, odbiorniki niezrównoważone, systemy niesymetryczne, definicje mocy, teoria mocy.  
 
 
Introduction  

Residential distribution systems, systems in commercial 
buildings or electrical traction grids can be regarded from a 
utility perspective as slowly time-varying aggregates of 
mainly single-phase loads, supplied from a three-phase, 
three-wire distribution system, usually through a transformer 
in /Y configuration, as shown in Fig. 1.  

 

Fig. 1. Three-phase load composed of aggregates of single-phase 
loads. 
 

Symbols u and i in this figure denote three-phase 
vectors of line-to-artificial zero voltages and line currents, 
namely 

   T T
df df

R S T R S T, , ,         , ,u u u i i i u i . 

 Even AC arc furnaces can be regarded as three 
separate single-phase arcs furnaces, in a common cage, 
i.e., three single-phase loads supplied from a three-wire 
system.  
 Due to a potential imbalance, such systems differ as to 
power properties from system dominated by three-phase 
loads, usually motors or rectifiers.  
 It could be a surprising observation that in spite of the 
fact that considerable amount of energy produced in power 
systems is distributed just in systems as shown in Fig. 1, 
the power theory enables now their description in power 
terms only on the condition that the supply voltage is sym-
metrical. It could be regarded as a remarkable deficiency of 
the power theory. Consequently, such loads can be descri-
bed in power terms only approximately, at the assumption 
that the supply voltage is symmetrical. Unfortunately, with 
the lack of power definitions valid at asymmetrical voltage, 
even the error of such approximation cannot be evaluated. 

 Studies on powers in asymmetrical three-phase systems 
have a century long history, but these studies are not 
concluded even now. They were initiated by Steinmetz [1] 
and Lyon [3], while the main mathematical tool for these 
studies, in a form of the concept of symmetrical compo-
nents, was provided by Fortesque [2].  
 Difficulties with the development of the power theory of 
asymmetrical three-phase systems have started with the 
question on how to select the definition of the apparent 
power.  
 The American Institute of Electrical Engineers (AIEE) 
adopted [4] in 1920 two different definitions of the apparent 
power, namely: arithmetic apparent power:  

(1)                     S = SA = URIR + USIS + UTIT  

and geometric apparent power: 

(2)                            S = G
2 2

 = + S P Q . 
A debate [6-8] on which one of these two definitions is right 
was inconclusive. Consequently, both were supported by 
the IEEE Standard Dictionary of Electrical and Electronics 
Terms [18]. At the same time, a definition of this power 
suggested in 1922 by Buchholz in [5], namely 

(3)               B R S T R S T
2 2 2 2 2 2

 = + + + +S S U U U I I I   

was not supported by the IEEE Standard.  
 Eventually it was proven in [21] that the arithmetic and 
geometric definitions of the apparent power in systems with 
unbalanced loads provide an incorrect value of the power 
factor, while the right value of this factor at sinusoidal vol-
tages and currents is obtained only when the Buchholtz 
definition (3) is used.  
 There is considerable amount of literature on various 
approaches to description power properties of three-phase 
systems, with some results published even recently [22-26] 
and studies on this subject are still not completed.  
 Most of studies [9-11, 13-17, 19] have focused the 
attention on power definitions at nonsinusoidal supply 
voltage. Unfortunately, at a wrong definition of the apparent 
power S, even at sinusoidal voltages and currents, it was 
not possible to develop neither the right definitions of 
electric powers of three-phase loads nor the right power 
equation. This issue for symmetrical supply voltages was 
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eventually solved in [17], however, for asymmetrical supply 
voltages both the power definitions and the power equation 
have yet to be developed. Their development is just the 
subject of this paper. Powers in systems with unbalanced 
loads have become the object of interest in [12], but still at a 
symmetrical supply voltage. 
 The Currents’ Physical Components (CPC) provides a 
conceptual frame for studies in this paper. It is based on 
three basic ideas: 
(i) The supply current of the load is a core quantity in the 

circuit for the power theory development. This prerequi-
site is in a contrast to approaches based on a power as 
such a core quantity.  

(ii) The supply current decomposition into mutually ortho-
gonal components. Orthogonality makes the rms value 
of the load current independent on mutual interactions 
of the current components.  

(iii)  The supply current components should be associated 
with distinctive physical phenomena in the circuit. This 
last prerequisite gave the name to this theory: Currents’ 
Physical Components (CPC) power theory. 

 These basic ideas of the CPC power theory were 
originally applied [13] to single-phase LTI loads with non-
sinusoidal supply voltage and next to loads with sequential-
ly increasing complexity with respect to their structure as 
well as voltages and currents waveforms. This paper can be 
regarded as a next step in this theory’s development, now 
applied to unbalanced LTI loads with asymmetrical, but 
sinusoidal supply voltage. 
 Apart from the CPC approach, the concept of an unba-
lanced current and unbalanced power are essential for 
these studies. Originally, the concept of the unbalanced 
power was introduced in [17] for an unbalanced load with 
nonsinusoidal, but symmetrical supply voltage. This 
concept, confined to LTI loads operated at such conditions, 
is outlined in the following Section. 

Original concept of unbalanced power  
 An equivalent circuit of linear stationary LTI loads as 
seen from the primary side of a /Y transformer, as shown 
in Fig. 1, can have the form shown in Fig. 2. As it was 
proven in [20] there is infinite number of such circuits, 
equivalent with respect to the load currents. 

 

Fig. 2. Equivalent circuit of three-phase loads. 

 The three-phase vectors of the load voltages and 
currents, can be expressed in the form 

(4)    
R Rdf

S S

T S

( )

( ) ( ) 2 Re e 2 Re{ e }

( )

j t j t
u t

t u t

u t

U

U

U

 
  
      
     

u U  

(5)     
R Rdf

S S

T T

( )

( ) ( ) 2 Re e 2 Re{ e }

( )

j t j t
i t

t i t

i t

I

I

I

 
   
        
      

i I . 

 In these formulas symbols U and I denote three-phase 
vectors of complex rms (crms) values UR, US, and UT of line 

voltages, measured with respect to an artificial zero, and 
line currents IR, IS, and IT. 
 For three-phase vectors of sinusoidal quantities, deno-
ted generally by x(t) and y(t), of the same frequency, a 
scalar product  

(6)                          T

0

1( , ) ( ) ( )
T

t t dt
T

 x y x y   

and three-phase rms value  

(7)              
df

T

0

1|| || ( , ) ( ) ( )
T

t t dt
T

  x x x x x  

can be defined [17]. The scalar product, defined by (6) in 
the time-domain, can be calculated in the frequency-
domain, having vectors of crms values of these quantities X 
and Y, as follows 

(8)              T T *

0

1( , ) ( ) ( ) Re{ }
T

t t dt
T

 x y x y X Y . 

Two vectors x(t) and y(t) are mutually orthogonal on the 
condition that  

(9)                         T *( , ) Re{ } = 0x y X Y  

and consequently, three-phase rms values of such quanti-
ties satisfy the relationship 

(10)                       2 2 2|| + || || || || || x y x y . 

 The scalar product of the supply voltage and the load 
current vectors is equal to the active power P of the load,  

(11)         
df

T T *

0

1( , ) ( ) ( ) Re{ } = 
T

t t dt P
T

 u i u i U I . 

 The power equation developed in [17] for LTI loads of 
the structure shown in Fig. 1 at sinusoidal and symmetrical 
and supply voltages, but asymmetrical currents has the 
form 

(12)                         2 2 2 2
uS P Q D   . 

 The apparent power in this equation was defined, 
according to the Buchholz definition (3), as the product of 
voltages and currents three-phase rms values, equal to 

(13)              
df

R S T
T 2 2 2

0

1|| || ( ) ( )
T

t t dt U U U
T

   u u u  

(14)              
df

R S T
T 2 2 2

0

1|| || ( ) ( )
T

t t dt I I I
T

   i i i . 

 Symbols P and Q in the power equation (12) denote 
common active and reactive powers, which can be directly 
measured at the load terminals. Symbol Du denotes the 
unbalanced power, defined as 

(15)                                 2
u = || ||D A u . 

The symbol A denotes the magnitude of the unbalanced 
admittance of the load, specified in terms of equivalent 
line-to-line admittances, as follows 

(16)     2 /3
ST TR RS= ( ),      = 1j jAe * eA Y Y Y       . 

 The unbalanced power was also defined in IEEE Std. 
1459 [24]. It was defined as  

(17)                       U
2 p 2 p 2( ) ( )S S P Q    
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where Pp and Qp denote the active and reactive powers, but 
only of the voltage and current symmetrical component of 
the positive sequence. The power defined by formulae (17) 
share only the adjective “unbalanced”, with that defined by 
(15). These are two different powers. Formula (17) cannot 
be rearranged to a power equation, since it neglects energy 
delivered to the load by the negative sequence component 
of voltages and currents. 

CPC decomposition at asymmetrical voltage 
 Apparent power S of single-phase loads and in balanced 
three-phase loads with sinusoidal voltages and currents is 
equal to the magnitude of the complex apparent power S  
which for single-phase systems is defined as  

(18)                        * j= S e P jQ.S U I      

 When the load is unbalanced and/or voltages are 
asymmetrical or nonsinusoidal then the apparent power S is 
no longer the magnitude of the complex apparent power S . 
Unfortunately, similarity of symbols for both powers may 
cause confusion and even may lead to errors. Since it is a 
very common custom of denoting the apparent power by S, 
a clearly different symbol is used in this paper for the power 
defined as 

(19)                      T * jP jQ = C e    CU I . 

Also the adjective “apparent” will not be used. The quantity 
defined by (19) will be referred to as a complex power. 
 With respect to active and reactive powers P and Q at 
the supply voltage u, the unbalanced load shown in Fig. 1 is 
equivalent to a balanced load shown in Fig. 3, on the condi-
tion that its phase admittances are equal to  

(20)                     b b b 2 2|| || || ||

*P jQ
G jB

C
Y


   

u u
. 

 

Fig. 3. Balanced load, which is equivalent to the original load with 
respect to active and reactive powers P and Q. 

Indeed, the complex power bC  of such load is 

(21)      T * T * 2
b b b b( ) || ||*= P jQ .C Y Y C    uU I U U  

 The supply voltage u is sinusoidal, but it can be asym-
metrical. Thus it can be decomposed into a sum of symmet-
rical voltages of the positive up and negative un sequence, 
so that 

(22)            p n p n2 Re{( ) e }.j t   u u u U U  

 A zero sequence symmetrical component uz cannot 
cause any current flow in three-wire systems. Thus it can be 
neglected or line voltages should be measured with respect 
to an artificial zero of the system, so the voltage vector u 
would not contain any zero sequence component.  
 Let us define unit three-phase vectors of the positive 
and negative sequence 

(23)       
df df

2 3 2 3

2 3 2 3

p n

1 11 1

1 ,     1

1 1

j / j /

j / j /

* e e

*e e

 

 

 
 





      
               
            

1 1   

shown in 4.  

 

Fig. 4. Unit three-phase vectors 1p
 and 1n. 

 The asymmetrical supply voltage u can be expressed 
with these vectors as  

(24)           p n p p n n2 Re{( ) e }j tU U    u u u 1 1   

where 

(25)                       
Rp

Sn

T

1, ,1
3 1, ,

*

*

U
U

U
U U

 
 

                  

. 

  Since Yb in (20) is admittance of a balanced load, which 
is equivalent to the original load with respect to the active 
and reactive powers, it will be referred to as the equivalent 
balanced admittance. Such an equivalent balanced load 
draws the current 

(26)         b a r b b2 Re{ e } 2 Re{ e }j t j tY    i i i I U  

composed of the active current 

(27)          
p n

b

p p n n

a b

b

2 Re{ ( ) } =

               = 2 Re{ ( ) }

j t

j t

G G e

G e

+

U + U





 i u

 

U U

1 1

 
 

and the reactive current 

(28)       
p n

p p n n

r b

b

( + /4) = 2 Re{ ( ) } =b

                           2 Re{ ( ) }.

j t

j t

B t T jB e

jB e

+

U + U









i u U U

1 1

 

 
 

 The remaining current of the load, after the current of 
the balanced load is subtracted, is caused by the load 
imbalance 

(29)      
df

b b u u2 Re{( )e } 2 Re{ e }.j t j t     i i iI I I  

Consequently, the load current is decomposed into the 
active, reactive and unbalanced current components, such 
that 

(30)                           i = ia + ir + iu. 
 Mutual orthogonality of the active and reactive currents 
results from their mutual phase shift by /2. Orthogonality of 
the balanced and unbalanced current has to be proven. 
Indeed 

(31)     

T * T T * *
b

T T * *

ub b b b b

b b

b b

( , ) = Re{ ( ) } = Re{ } =

                                         = Re{ ( )} =

                                         = Re{ ( )} = 0 

*

*

Y Y Y

Y Y

Y C C

 





i i I I I U I U U

U I U U  

thus these three current components are mutually orthogo-
nal and consequently 

(32)                    2 2 2 2
a r u|| || || || || || || ||  i i i i . 

 Each current component in decomposition (30) is dis-
tinctively associated with a unique physical phenomenon in 
the circuit, thus they can be regarded as Currents’ Physical 
Components, (CPC).  
 This decomposition can be performed, and the three-
phase rms values of each particular current can be 
measured or calculated by measurements of active and 
reactive powers P and Q at the load terminals as well as 
crms values IR, IS, and IT of the load currents.  
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 Multiplying (32) by the square of the three-phase rms 
value ||u|| of the supply voltage 

2 2 2 2 2
a r u{ || || || || || || || ||  }    || ||   i i i i u  

the power equation 

(33)                         2 2 2 2
uS P Q D    

is obtained, with the unbalanced power defined as 

(34)                            
df

u u= || || || ||D u i .  

This power equation is identical with eqn. (12), but deve-
loped without the assumption that the supply voltage is 
symmetrical. Thus, the supply voltage asymmetry does not 
affect the general form of the power equation of stationary 
LTI loads with sinusoidal supply voltages. 
 Power equation (34) and the values of the active, 
reactive and unbalanced powers provide distinctive informa-
tion on how permanent flow of energy to the load; the 
phase-shift between the supply voltage and the load 
current, as well as the load current asymmetry affect the 
apparent power S.  
 The unbalanced current iu in formula (29) is not expres-
sed in terms of the load parameters, however. It only fills a 
gap between the load current and its active and reactive 
components. The same applies to the unbalanced power 
Du. Definition (34) has no analogy to definition (15). It is 
possible to calculate its value, but it cannot be used in a 
design process of a reactive compensator that would 
compensate this power. A dependence of the unbalanced 
power on the circuit parameters is needed for that.  
 Therefore, let us find how the unbalanced current and 
power depend on the circuit parameters. 
 The active and reactive currents in circuits with sym-
metrical supply voltage are symmetrical currents, such that  

(35)     a r e e e2 Re{( + ) e } 2 Re{ e }j t j tG jB Y   i i U U  

where, according to [17],  

(36)               
df

e e e ST TR RS = + +G jBY Y Y Y   

is the equivalent admittance of the load. It is a phase 
admittance of a balanced load, which is equivalent to the 
original one with respect to the active and reactive powers P 
and Q. 
 When the supply voltage is asymmetrical then, accord-
ing to formulas (27) and (28) the active and reactive 
currents follow the voltage asymmetry.  
 The phase admittance Yb of the equivalent balanced 
load is different than the equivalent admittance Ye, because 

(37)    
2 2 2

RS RS ST ST TR TR
b b 2 2b || || || ||

U U UP jQ
G jB

Y Y Y
Y

 
   

u u
. 

 At symmetrical supply voltage URS = UST = UTR = ||u||, so 
that Yb = Ye. If the voltage is asymmetrical then admittances 
Ye and Yb differ mutually by admittance Yd,  

(38)                     
df

d d ed b = + =  G jBY Y Y  

dependent on the voltage asymmetry. This asymmetry can 
be specified quantitatively by a complex coefficient of the 
supply voltage asymmetry, defined as 

(39)          
n n n df

( )
p p p

 = 
j

j j
j

U e U
e ae

U e U

U

U
a


  


   . 

 When the voltage asymmetry is specified by this 
coefficient, then the difference between admittances Yb and 
Ye is equal to 

(40)     ST TR RS2
2 2

d 3 3
2= [ cos cos( ) cos( )]

1
a
a

Y Y Y Y      


. 

 Admittance Yd depends not only on the line-to-line 
admittances of the load, but also on the supply voltage 
asymmetry. When the load is balanced, i.e., YRS = YTR = YST 
= Ye/3, then Yd = 0, independently on the supply voltage 
asymmetry. When the supply voltage is symmetrical and 
consequently, asymmetry coefficient a = 0, then Yd = 0, 
independently on the load imbalance. Therefore, admit-
tance Yd is referred to as a voltage asymmetry dependent 
unbalanced admittance in this paper. Admittance Yd can 
have a non-zero value only if the load is unbalanced and 
the supply voltage is asymmetrical. 
 The vector of crms values of unbalanced current Iu in 
the load supply lines can be decomposed, as shown in 
Appendix A, as follows 

(41)                    n pp p n n
u d = Y A U A U I U 1 1  

where 

(42)                      
df

p
ST TR RS= ( + )*A Y Y Y     

(43)                      
df

n
ST TR RS=  ( + )*A Y Y Y    

are unbalanced admittances for the positive and the nega-
tive sequence voltages. The term  

(44)                               
df

n np p = A U J1  

in formula (41) stands for a vector of crms values of sym-
metrical currents of negative sequence proportional the 
positive sequence voltage, while  

(45)                               
df

p pn n  =A U J1  

stands for a vector of crms values of symmetrical currents 
of positive sequence proportional the negative sequence 
voltage.  
 Thus, the vectors of the active, reactive and unbalanced 
currents, ia, ir and iu can be specified in terms of four 
admittances, Yb, Yd, Ap and An, which can be expressed in 
terms of line-to-line admittances YRS, YST, and YTR, line-to-line 
supply voltage rms values and the coefficient of its 
asymmetry a.  

Equivalent circuit 
 The original unbalanced LTI load supplied with asym-
metrical voltage can be regarded as a parallel connection of 
two balanced loads with phase admittance Yb and Yd, 
respectively, and two symmetrical current sources, connec-
ted as shown in Fig. 5, which inject two three-phase 
currents jn and jp. The balanced loads draw asymmetrical 
currents of the crms value proportional to admittance Yb and 
Yd. Three-phase currents jn and jp are symmetrical currents 
proportional to the positive and negative sequence compo-
nents of the supply voltage up and un, but of opposite 
sequence to those voltages, according to formulae (44) and 
(45). All parameters of such equivalent circuit are expres-
sed in terms of line-to-line admittances YRS, YST, and YTR, of 
the  configured equivalent circuit shown in Fig. 2.  
 Such a circuit can be regarded as an equivalent circuit 
of unbalanced loads supplied with sinusoidal, but asym-
metrical voltage. It visualizes the complex nature of the 
unbalanced current iu. This nature could be irrelevant when 
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only its rms value or/and the unbalanced power have to be 
known. Knowledge of this nature could yet be crucial for a 
process of design of a reactive compensator that would be 
capable to compensate the unbalanced current. A study on 
a possibility of reactive compensation of such loads is 
beyond of the scope of this paper, however. 

 

Fig. 5. Equivalent circuit of unbalanced load. 

 The balanced branch with admittance Yb has the active 
and reactive powers equal to P and Q, respectively, 
because this admittance was calculated, according to 
formula (20), just to satisfy such a condition. 
 The branch with the unbalanced current iu, has to have 
zero active and reactive powers, P and Q, because these 
two powers of the original load are equal, according to 
formula (20), to the powers of the branch with current ib, 
while the whole equivalent circuit has to satisfy the balance 
principle with respect to the active and reactive powers. The 
only non-zero power of this branch could be the unbalanced 
power Du. 

 Illustration. Let us calculate physical components of the 
load current in the circuit shown in Fig. 6, with strongly 
asymmetrical supply voltage and strongly unbalanced load. 
The active and reactive powers of the load are equal, 
respectively, to P = 10.0 kW and Q = 10.0 kvar.  

 

Fig. 6. Example of unbalanced load with asymmetrical supply 
voltage. 
 
 Complex rms values of the positive and negative sequ-
ence symmetrical components, Up and Un, of the supply 
voltage, calculated according to (25), are equal to 

o

o

p
120

60n

100
66 661, ,1 100 V.

3 1, , 33 330

j
j

.*
e

* . e
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U
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

 
      
       
         

  

 

The three-phase rms values of the supply voltage symmet-
rical components are 

p p|| || 3 3 66 66 115 47 VU . .   u  

n n|| || 3 3 33 33 57 73 VU . .   u  

and consequently, three-phase rms value of the supply 
voltage is 

p 2 n 2 2 2|| || || || || || 115 47 57 73 129 1V. . .    u u u  

while the vector of the supply voltage with respect to the 
artificial zero is 

o

o

o

o

19 1

60 139 1

120

p p n n

88 21 1

= 66 7 33 3 88 2 V.

33 3

j .

* j j .

* j

. e

. . e . e

. e

U U  
 



                            

U 1 1

 The equivalent balanced admittance Yb of the load in the 
circuit shown in Fig. 3 is equal to  

b b b 2
0 600 0 600 S

|| ||

P jQ
G jB . j .Y


    

u
 

hence, the active current vector has the waveform  

o

o

o

o

p p n n
a

p n 60

19 1

139 1

120

a b2 Re{ e } 2 Re{ ( ) } =

    = 2 Re{0 60( 66 7 3 33 ) } =

52 9

             2 Re{ 52 9 } A.

20 0

j t j t

j j t

j .

j . j t

j

G e

. . . e e

. e

. e e

. e

U + U

+

 





 

 

 
 
 
 
 
 
  

i 1 1

1 1

I  

  

The vector of the reactive current is 

o

o

o

p p n n
r r

70 9

130 9

30

b2 Re{ } 2 Re{ ( ) }     

52 9

                  2 Re{ 52 9 } A.

20 0

j t j t

j .

j . j t

j

e jB e

. e

. e e

. e

U + U 





  

 
 
 
 
 
 
  

i I 1 1 

 

The unbalanced current vector can be presented in the form 
o

o

o

135

75
u a r

75

95 2

= 2Re{( )e } 2Re{ 95 2 } A.

164 9

j

j t j j t

j

. e

. e e

. e

 





 
 
   
 
 
 

i I I I  

Three-phase rms values of the current components are 
equal to 

a b|| || || || = 0.60 129 1 77 46 AG . .  i u  

r b|| || | || || = 0.60 129 1 77 46 A|B . .  i u  

2 2 2 2 2 2
u uR uS uT|| || 95 2 95 2 164 9 212 9A.I I I . . . .      i  

The supply current has the three-phase rms value 

2 2 2 2 2 2
R S T|| || = 100 100 193 2 239 4 AI I I . .     i  

and indeed  

2 2 2 2 2 2
a r u|| || || || || || 77 46 77 46 212 9 239 4A. . . .     i i i  

which confirms numerical correctness of the current decom-
position into physical components. 
 The load power factor = P/S = ||ia||/||i|| = 0.32. The 
unbalanced power is equal to 

u u= || || || || 129 1 212 9 27 5 kVA.D . . .   u i  

 To find parameters of the equivalent circuit of the load 
let us calculate unbalanced admittances Ap and An, namely 
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o165
ST TR RS

p = ( + ) = [1+ ( 1)] = 1.932 S* jj eA Y Y Y        

o105
ST TR RS

n = ( + ) = [1+ ( 1)] = 0.518 S* * jj eA Y Y Y       . 

The complex coefficient of the supply voltage asymmetry is 
equal to 

o
on 60

60
p

33 33
 = 0 50

66 66

j
j j. e

ae . e
.

U
a

U
     

therefore, the asymmetry dependent unbalanced admit-
tance is equal to 

o

ST TR RS2

o o o 45
2

2 2
d 3 3

2
= [ cos cos( ) cos( )] =

1

2 0 5
    = [cos(60 ) cos(60 120 )] 0 566 S.

1 0 5
j

a

a

.
j . e

.

Y Y Y Y
   



   



  



 

With these parameters of the equivalent circuit, the vector 
of the unbalanced current crms values is equal to 

o

o

o o o

o

R
45

S

T

135

165 105 75

75

p p pn n n
u

p n

d  = 0 566

95 211

1.93 0.518 95 2 A.

164 9

j

j

j j * j

* j

. e

. e

e e . e

. e

U

= Y A U A U U

U

U U 






  

 
    
  

                        

I U 1 1

 

 It could be checked that the complex power of the 
branch of the equivalent circuit with the unbalanced current 
iu is 

T *
u u u u 0= P jQ .C   U I  

This confirms numerical correctness of calculation of the 
unbalanced current, thus correctness of calculation of the 
parameters of the equivalent circuit. 

**** 

 Formula (41) shows that the unbalanced current is an 
intricate quantity. Unbalanced admittances Ap and An 
depend only on the load parameters, while the asymmetry 
dependent unbalanced admittance Yd depends moreover 
on the supply voltage asymmetry. Admittances Ap and An 
can have different values and consequently, dependence of 
the unbalanced current on the supply voltage positive and 
negative sequence components can be different. 
 Since the equivalent balanced admittance Yb = Ye Yd 
and consequently, Gb = Ge Gd and Bb = Be Bd, the active 
and reactive powers can be decomposed into components 
independent of the voltage asymmetry and dependent on it, 
namely 

(46)                  2 2
d s deb || || ( )|| ||P = G G G P P   u u  

where Ps denotes the load active power at a symmetrical 
supply voltage, but with the same rms value as the asym-
metrical one. The power Pd occurs because of the supply 
voltage asymmetry, but it disappears, independently of this 
asymmetry, when the load is balanced.  
 Similarly, the reactive power 

(47)            2 2
d s deb || || ( )|| ||Q = B B B Q Q     u u  

where Qs denotes the reactive power at symmetrical supply 
voltage, while the power Qd occurs because of the supply 
voltage asymmetry in presence of the load imbalance. 
 Observe that the unbalanced current contains both 
positive and negative sequence components, since the 
vector 

(48)                      
df

n p p n n
ud A U Y U I1  

is a vector of crms values of the supply currents of the 
negative sequence, while the vector 

(49)                       
df

p n n p p
ud A U Y U I1  

is a vector of crms values of the positive sequence currents. 
Thus, the unbalanced current can be expressed in the form 

(50)               p n p n
u u u u u2 Re{( ) }j te= = i i iI I   

so that, the load current can be decomposed into four com-
ponents 

(51)                          p n
a r u u   i i i i i .  

These components are mutually orthogonal, so that their 
three-phase rms values satisfy the relationship 

(52)                  2 2 2 p 2 n 2
a r u u|| || || || || || || || || ||   i i i i i . 

 The active current ia is associated exclusively with 
permanent energy transfer from the supply source to the 
load, meaning with the load active power P. The reactive 
current ir is associated exclusively with the phase-shift 
between the supply voltage and the load current, meaning 
with the load reactive power Q. These two currents are 
asymmetrical currents and their asymmetry reproduces the 
asymmetry of the supply voltage. Currents p n

u u andi i  are 
symmetrical currents, which occur exclusively due to the 
load imbalance. They do not contribute to the active and 
reactive powers P and Q of the load, but only to an increase 
of its three-phase rms value. Therefore, these four compo-
nents of the load current can be regarded as the Currents’ 
Physical Components (CPC). 
 Multiplying eqn. (52) by the square of the three-phase 
rms value of the supply voltage, the power equation is 
obtained in the form 

(53)                        2 2 2 p2 n2
u uS P Q D D     

with  

(54)                   
df df

p p n n
u u u u= || || || ||,      = || || || ||.D Du i u i  

Conclusions 

 The paper shows that the basic ideas of the Currents’ 
Physical Components power theory can be applied to 
unbalanced three-phase LTI loads supplied with sinusoidal, 
but asymmetrical voltage. It enables decomposition of the 
load current into orthogonal components associated with 
distinctive physical phenomena in the circuit and to describe 
the load in power terms. Results presented in this paper 
enable to remove one of deficiencies of the power theory of 
electrical circuits, namely, the lack of a power equation in 
the situation when an LTI unbalanced load is supplied with 
sinusoidal, but asymmetrical voltage. 
 



46                                                                                 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 6/2015 

Appendix 
Equivalent admittances 
 Let an LTI unbalanced load has an equivalent circuit as 
shown in Fig. 2. 

The complex power C of a three-phase load is defined as 

T *
R R S S T T

* * *= U I U I U IC   U I  

hence 

R R S S T T

R RS TR S ST RS T TR ST

RS RS ST ST TR TR

RS RS RS ST ST ST TR TR TR

2 2 2
RS RS ST ST TR TR

RS RS ST ST TR T

   ( ) ( ) ( )

   

   

    = 

   ( ) ( ) (

* * *

* * * * * *

* * *

* * * * * *

* * *

=

U U U

P jQ P jQ P jQ

U I U I U I

U I I U I I U I I

U I U I U I

U Y U U Y U U Y U

Y Y Y

C   

      

   

   

 

      R) = P jQ.

 

It can be also expressed directly as the sum of complex 
powers of three single-phase loads configured in  as 
shown in Fig. 2, namely 

RS ST TR RS RS ST ST TR TR

2 2 2
RS RS ST ST TR TR                  = 

* * *

* * *

=

U U U .

C C C U I U I U I

Y Y Y

C      

 
 

The complex power for individual branches can be 
expressed as follows 

2 2
RS RS RS RS RS RS RS R S R S = ( 2Re{ }).* * * * *U UC U I U Y U Y U U     

Since 
2 * 2 2 *
T R S R S R S R S( )( ) 2Re{ }U U UU U U U U U         

thus,  

(A1)        2 2 2 2 2
RS RS R S T RS T(2 2 ) = (2 || || 3 ).* *U U U UC Y Y   u  

Similarly 

(A2)               2 2
ST ST ST ST ST R(2 || || 3 )* * * UC U Y U Y  u  

(A3)               2 2
TR TR TR TR TR S(2 || || 3 ).* * * UC U Y U Y  u  

The equivalent balanced admittance of the load, defined by 
eqn. (20), can be expressed with eqs. (A1) – (A3) in the 
form 

RS ST TR
2 2

df
2 2 2

ST R TR S RS T2

* *

b

de e

(A4)       
|| || || ||

3
                  2 ( ) =

|| ||

**

U U U

C C CC
Y

Y Y Y Y Y Y

 
  

   

u u

u

 

where 

ST TR RSe e e + = G jB .Y Y Y Y    

is the equivalent admittance of the load when it is supplied 
with a symmetrical voltage, and 

(A5)          
df

2 2 2
ST R TR S RS T2 ed

3
 =  ( ) .

|| ||
U U UY Y Y Y Y   

u
 

 Let us express this admittance in terms of crms values 
of symmetrical components of the positive sequence Up and  
the negative sequence Un. Since 

(A6)      R S T
p n p n p n,  ,  * *U U U U U U U U U          

then 

2 p2 n2 p* n
R 2Re{ }U U U U U    

2 p2 n2 p* n
S 2Re{ }*U U U U U  
2 p2 n2 p* n
T 2Re{ }U U U U U   . 

The crms values Up and Un have the form 

p p n n,            j jU e U eU U    

therefore, if we denote 
df

p* n p n ( )j jU U e WeU U W      

admittance Yd, given by (A5), can be expressed as 

(A7)      ST TR RS
p2 n2d

Re{ } Re{ }+ Re{ }
 = 2

*

.
U U

Y W Y W Y W
Y

 


 

 When the supply voltage asymmetry is specified by 
complex asymmetry coefficient a, then  

p* n p n
( )

p2 n2 p2 n2 2

Re{ }
Re{ } cos

1
jU U a

e
U U U U a

U U    
  

 

and consequently, the asymmetry dependent unbalanced 
admittance Yd can be rearranged to the form 

(A8)    ST TR RS2

2 2
d 3 3

2
= [ cos cos( ) cos( )].

1

a

a
Y Y Y Y

      


 

The crms value in line R current is equal to 

R RS R S TR T R( ) ( )I Y U U Y U U     

and can be rearranged to the form 

(A9)               R R ST R TR T RS S( ).eI Y U Y U Y U Y U     

 If crms values of line voltages UR, US and UT are expres-
sed in terms of symmetrical components, i.e., with formula 
(A7), then formula (A9) can be rearranged to 

pp n n
R R RR  eI Y U A U A U    

where  

(A10)                
df

p
ST TR RS= ( + )*A Y Y Y    

(A11)                
df

n
ST TR RS=  ( + )*A Y Y Y   . 

Similarly, the crms value of lines S and T currents can be 
presented in the form 

pp n n
S S TT  eI Y U A U A U    

pp n n
T T SS  eI Y U A U A U   . 

These three crms values of supply line currents can be 
expressed in the vector form 

(A12)           
R

n p p p n n
S

T

  e

I

I Y A U A U

I

 
     
  

I U 1 1  

so that, the vector of unbalanced currents is equal to 

n p p p n n
u b ( )   e b= Y Y A U A U    I I I U 1 1  

or it can be rearranged as follows 

(A13)                       n p
u d = Y  J JI U  

where  

(A14)            n n p p p p n n ,         .= A U = A UJ J1 1  
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