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Modelling of three-phase transformer’s operation using
variational methods

Abstract. This paper presents a mathematical model of power system. The interdisciplinary method, based on a modification of Hamilton’s integral
variational principle, is used in order to model the system. The analyzed system consists of a nonlinear power transformer that is connected to the
unbalanced energy source via asymmetric cable line. The unbalanced RLC circuit is considered as a load of the transformer. The operation of the
transformer in transient states is analyzed using the formulated model. The results of computer simulations are presented as graphs.

Streszczenie. W pracy przedstawiono model matematyczny ukiadu elektroenergetycznego stosujgc interdyscyplinarng metode modelowania, ktéra
wykorzystuje modyfikacje integralnej zasady wariacyjnej Hamiltona. Analizowany uktad skfada sie z nieliniowego transformatora mocy, ktéry jest
podigczony przez asymetryczng linie kablowg do niesymetrycznego zrédta energii. Transformator pracuje obcigzony niesymetrycznym obwodem
RLC. Wykorzystujgc sformutowany model przedstawiono analize pracy transformatora w stanach przej$ciowych. Wyniki symulacji komputerowych
przedstawiono w postaci graficznej. (Modelowanie pracy tréjfazowego transformatora mocy z wykorzystaniem metod wariacyjnych).
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Introduction The following additional variables were defined in Figs:
A power transformer is one of the main components of  a) line-to-line (phase) voltages of secondary winding
power systems. Power conversion processes in this device Uyag =Usa —Usg, Usge =Usg —Usc, Uscp =Usc —Usp
depend on the design parameters of transformer and the
state of power line. It is very important for consumers to o

ensure not only the sufficient transformer power, but also windings Ui, Uy o

the adequate power quality, including symmetry of supply  c)phase inductances of cableline L,,, Lz, Lc» Lyas Lyg» Ly
voltage. In general case, not only a power transformer should

be modelled precisely: also its load and power line. The
equations based on distributed parameters should describe 0
physical processes occurring in power line in order to ensure
the sufficient adequacy of mathematical model [2]. Such model
is very complicated and requires integration of equations
with partial derivatives, whereas, in majority calculations the
alternative solution is the appropriate connection of RLC
elements that represents a cable line accurately enough. In
general, two connections of elements are taken into account:
serial and serial-parallel. The first type of connection was
presented in [1], whereas, the second type is considered in
this paper. The ways of derivation of state equations are
different for both connections. Fig. 2. Electric circuit consisting of secondary winding elements

b) voltages over cable line inductances for both A-phase

Mathematical model The equations of non-varying constraints are given below
The extended funptlonal of operatlop by Hamlltpn was (1) Ugpa+Ugg +Ugc #0, U, +U,5+U, #0,

formulated on the basis of non-conservative Lagrangian and

used in order to obtain the mathematical model of power Upa + U + U # 0,

system, including power transformer and power line. The Uer +Ucre 4 Ui 0. Usi +Uno AU 20

variations of the functional were derived and compared to zero, (2)  Ugon *Uzsp +Ussc > T2bA T Tale T RLC ’

and then the extreme function (extremal) equations together Uyga +Uygg +Uype 20

with constraints equations, being the mathematical model of @3

. i =iyp, i =iyg, bhea =i i +1i +i =0
the power system, were obtained as a consequence. The 2AB T 72A- 2BC T 28> 2CA T 2C> 2AB T 12BC T 2CA T T -

)
considered power system is depicted in Figs 1 and 2. (4) fza=h+Tafzg =N+ hsc =N+, A#lg#Ic,
(6) ha+ig+ic =0, ha+ip+i)x =0,
(6) Uppg +Uypc +Uyca =0, R # Ry # R,
(7) LlA * LIB * LlC’ L2A * LZB * L2C ’
(8) Uska =UyatUsgas Uskg = Uy g+ Upgg,

Uske = Usie T Upre -
The extended functional of operation by Hamilton using
the modified Lagrangian elements was formulated [1, 2]:
(9 L=T-P+0"-D",
where L is modified Lagrange’s function, T~ is kinetic co-

Fig. 1. Electric circuit consisting of primary winding elements energy, P’ is potential energy, @ is dissipation energy,
D" is external forces energy.
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The following generalized coordinates were used: electric
charges in primary and secondary windings of transformer

QnA’QnBﬂQnC’ Charges in CapaCitances QnKlA’QnKlB’QnKlC
and charges in cable line wires Q. ;>Qu28>Qucac - The

currents in|<2A> inKZB > inKZC in

windings were assumed as the generalized velocities,
where n=1,2 are indexes of the primary winding and the
secondary winding, respectively.

On the basis of Figs 1 and 2, the Lagrangian elements (9)
are given as follows [1,2]:

InA’ InB > InC ’ InKlA’ InKlB’ InKlC ’

i
i

(10  T=Y {J'\P“dl + [, di, ZLM“]
0

2
+Z|: nAB nKlA nK1B + MnAC nKlAInKIC + MnBA nKlBanlA +

n=1

+M nBCInKlBanlc + MnCA'nKlC'nKlA + MnCBanICInKlBi| ’

(11) p* :1|:(Q1A _QIKIA)2 + Qe _QIKIB)Z + Qi _Qlch)2}+
2 Cia Ce Cic
+1|:(Q2A _ch _QzKlA)2 + (QZB _QZA _QZKIB)Z +
2 Ca Cu
+(ch _QZB _Qzch)2 liicnu:c ,
Cyc 203E "™
1 2 3 . 1 2 3 , 3 , ,
Ezzcmunq’ @ _Ezzrnlm +ZrJIIK11 +Z Ribij
n=1 j=1 1 j=1 j=1 j=1

3t
(12) D :z_[uzu l]dt+_[ $2A T zzs)le +(uzzs zzc)izs +
j=lo

t

Ugap)lse )dt - IVOI(iIA +ijg +ic)dT— I((uch -u
0

0
H(Uycp —Uyee Dpg + (Usee —Usca)isc )de i=AB.C,

where ¥,,¥, are column vectors of flux linkages of

+(uzzc - ZCB)iZA +

n=1,2,

transformer primary and secondary windings, r,r, are

resistance matrixes, i,i, are column vectors of currents,
u;,u, are column vectors of voltages.

The modified Lagrangian was formulated on the basis of
the equations (10) — (12). Substituting it into the functional of
operation by Hamilton [1] and determining the functional
variations, the Euler-Lagrange’s equations were derived [1].
The following dependencies were obtained by solving them:

dw,
(18) g thhi-wowztue +Vip=0,
d¥ .
(14) dtZA +hipp = (Uysp —Uzsp) + (Uyca —Upsg) =0,
d¥ .
(19) dtZB +hiyg — (Uzzg —Uzsc) + (Uzcg —Upsc) =0,
d¥v .
(16) dtzc +hiye —(Upsc —Usza) +(Uxce —Uzza) =0,
(17) Uy +rigk; —upc =0,
(18)  —upc+C'Quk2 =0,
where:
di di di
19) U =L nK1A +M nK1B +M nKi1C ,
(19) UnLa =Lna dt nAB o AC g

di di di
20) Uyr =L nK1B | M nKI1A , M nkIC -
(20) Ung =Lns ot NBA ™ 11 nBC ¢
di di di
21) U =L nKIC . M nKI1A | nK1B )
(21) Unic nC dt nCA dt nCB dt
The sum of terms in matrix equation (13) is given below:
1
(22) V10 - _5(_((UIZA - ul):B) + (u1zB - ulzc) +
+(UIZC - ulZA)) + ulCA + uICB + ulCC ) .

On the basis of the non-varying constraints:

(3) Yo +¥ g +¥, =0, inA + inB +lpe =0
it was obtained:
d| ¥ 1] 2U,5, — U —U
(24) u A _ 1t 1A 1B 1 |
dt ‘{Jm 3 2ulzB —Ujza —Ugc
_1 2Uicp = Uycg —Uige _ rz
3 Zuch Uica —Uice h ilB
(25) i \PZA _ (UZEA B uzzs) _ (UZCA B uzcs) _
dt \st (uzzB B uzzc) (uzca B uzcc)
_ 5 i2A
h izB

The column vectors of voltages over inductances and
voltages over capacitances of cable line at primary winding
and secondary winding are given as follows [1]:

LnA M nAB M nAC inKlA d
(26)“517_) =|Mpa L Mg dt !nKlB = (ﬁs)a'ﬁ?l,
M nCA M nCB LnC InK 1C
d _d e ONRTE) ) NE)
(27)aulc =t Uicg :|:Cl :| 11K2_|:C ] (A =)
_UICC
d ul) = tack OERIE) ) i®
(28) =t Uscs =|:C2 :| L2 _|:C2 :| (Agi, —iy),
UZCC
where ® indicates the rank of matrix, as well as
1 0 2 1
(29) A={0 1] A =-11
-1 -1 -2 -1

While for two-phase system:

_ _lu
2 _1 _1 1CA
30) Yic =Buy = Upcs
-1 2 -1 '
- " Yics
_ _[u
2 _1 _1 1ZA
@1 Yz :Blug) = 1 2 1 Upsg ||
- " Uiss
- _UZCA
=Bu) = -bo u
(32) o -1 1 R
" Uacs
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uZZA
u :Bu(3)=1 -0 u
(33) 2% PASVI 0 _1 1 23B ,
UZEB

where: A,, B, are topological matrixes.
According to Figs 1 and 2 it can be written:
ding, DT (4@ _ i
d :|:L(n):| (ung—ranl)’rzR

On the basis of the equation of constraints [1], the
dependencies between transformer phase currents and
fluxes can be determined as follows:

(33)
Time derivative of current vector:

di, (d‘l’n d\y]_
on -

(34)

-1

¥, =Lysip+vy, ops =Ly

(36) dat " at dt
_d_‘lfj
dt )
The operating flux vector is expressed as follows [1]:

I I
@7) yp =1 (i +iy)
whereas time derivative thereof:

=0gn [“nz —Upc —Iply

d . .
(38) d—‘,l[’ =G (ug —uic —1jip ) + G, (uys —uyc —hiy),

where:

1
(Agia +0g2a +PA)

(39) G=

]
(Gg1B + 0528 +PB)

p=di/dy is inverse differential inductance of the
transformer, VY is operating flux.
Substituting in the equation (36) for time derivative of flux

(38), mathematical model of power transformer was obtained:

di . .
(40) d_tl =A(uy —uc —nip) + A (uyy —uyc — i),

di, . .
(41) e Ay (uy —ujc — i) + Ay (uyy — Uy —Ihiy),

42) Ajj =05 (1-05G), A=Ay =-050,G,
Ay =051-05,G).

The differential equations (27), (28), (34), (40), (41)
have to be integrated together, taking into account the
dependencies (19) — (22), (29) — (33), (39), (42).

Results of computer simulation

Simulations of three-phase power transformer were made
and they are presented below. The unbalanced electric
power source, that fed the transformer via cable line, was
considered. The unbalanced load was connected to the
transformer secondary winding also via cable line. The
power transformer with parameters U, = 6 kV, U,,=

04KV, S, =160 KVA, P, =410 W, iy = 2%, P,, = 3650 W

is considered in the experimental investigations.

Three computational examples are shown in the paper.
The first one deals with symmetrical system (power supply
and transformer load). The second example deals with
asymmetry of resistance, inductance and capacitance in
circuits of both transformer windings. The third example deals
with asymmetry of resistance, inductance and capacitance in
circuits of both transformer windings, as well as asymmetry
of feeding voltage of the transformer primary winding.

Fig. 3 shows time changes of transformer primary
winding current for symmetrical system (the first computational
example). Analyzing this Figure it can be seen that: 1)
transient processes after connecting the transformer to the
power source are invisible due to small values of
electromagnetic time constants, 2) in steady state the
magnitudes of all phase currents are identical. The currents

reach the rated values.
30— LA

] 1 2
20

20—
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% 0 ‘ 0.‘02 ‘ 0.‘04 ‘ 0.‘06

Fig. 3. Time changes of current in the transformer primary winding
for the first computational example: 1 is A-phase current; 2 is B-
phase current

Fig. 4 shows time changes of short-circuit current in the
transformer secondary winding for 3-phase symmetrical
system (the first computational example). The current
increased over seventeen times in comparison with the
previous experiment.
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Fig. 4. Time changes of short-circuit current in the transformer
secondary winding for the first computational example: 1 is A-
phase current; 2 is B-phase current

Figs 5 and 6 show time changes of transformer primary
and secondary winding currents for asymmetrical system
(the second computational example). The rated data of
power devices and power transformer load are given as
follows: primary winding resistances: ry=22,5Q,
rg=112,5Q, 1. =225Q, primary winding inductances:
LAo=0,0675 H, Lig =0,0045 H, L,c =0,0225H, primary winding
capacitances Cjp=4,5pF, Cjg=22uF, Cc=0,4pF,
secondary winding resistances: Ry=095Q Rz =20, R-=0,4Q,
secondary winding inductances: L, =0,003 H, L,z =0,0001 H,
L,c =0,001 H, secondary winding capacitances C,, =100 uF,
C,g =1000 n F, C,c =500 puF. Oscillations of currents can

be seen for short time after feeding the transformer due to
the oscillation of instantaneous power between inductances
and capacitances of cable and transformer windings.

Figs 7 and 8 show time changes of transformer primary
and secondary winding currents for asymmetrical system (the
second computational example): primary winding voltages
Up =300sin(314t) , ug =250sin(314t—96°), uc =330sin(314t+72°),

primary winding resistances: r,=22,5Q, rp=1125Q, =25Q,
primary winding inductances: Lj,=0,0675 H, L;g =0,0045 H,
Lic =0,0225 H, primary winding capacitances Cjy =4,5pF,
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Cig=2,2nF, Cc =0,4u F, secondary winding resistances:
Ry=095Q, Ry =20, R-=0,4Q, secondary winding inductances:
L,Ao=0,003 H, L, =0,0001 H, L,c=0,001 H, secondary
winding capacitances C,, =100 uF, Cg=1000pnF, Cc =500 uF.
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Fig. 5. Time changes of current in the transformer primary winding
for the second computational example: 1 is A-phase current; 2 is B-
phase current
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Fig. 6. Time changes of current in the transformer secondary
winding for the second computational example: 1 is A-phase
current; 2 is B-phase current
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Fig. 7. Time changes of current in the transformer primary winding
for the third computational example: 1 is A-phase current; 2 is B-
phase current
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Fig. 8. Time changes of current in the transformer secondary
winding for the third computational example: 1 is A-phase current; 2
is B-phase current

Figs 9 and 10 show time changes of transformer primary
and secondary winding currents for asymmetrical system and
single-phase short-circuit of A-phase secondary winding from
t=0,06 (the third computational example).
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Fig. 9. Time changes of currents in the transformer primary winding
for asymmetrical system and single-phase short-circuit of A-phase
secondary winding (the third computational example): 1 is A-phase
current; 2 is B-phase current
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Fig. 10. Time changes of currents in the transformer secondary
winding for asymmetrical system and single-phase short-circuit of A-
phase secondary winding (the third computational example): 1 is A-
phase current; 2 is B-phase current

Conclusions

1. On the basis of variational method [1] the mathematical
model of power system, incl. power transformer loaded and
fed asymmetrically, by forming the extended functional of
operation by Hamilton [2] was formulated.

2. Variational approaches allow for the adequate
modelling of the complicated and asymmetrical states of
transformer operation for various connections of cable
elements: serial [3], parallel and serial-parallel.

3. Analysis of transformer short-circuit states shows that
the most dangerous for the system are 2-phase and 3-
phase short-circuits.
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