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Abstract  The UGR index is practically used measure of a discomfort glare for the interior working environment. The basic parameters of the index 
formula are the angular dependences which define the visibility of light sources. In the paper the new method for light sources description has been 
presented. The mathematical model using spherical harmonics is discussed. Spherical harmonics allows for convenient and efficient description of 
the light sources positions as well as their shapes in the field of view.  
 
Streszczenie  Wskaźnik UGR jest praktycznie stosowaną miarą olśnienia przykrego dla stanowisk pracy we wnętrzach. Podstawowymi 
parametrami wpływającymi na wartość wskaźnika są zależności kątowe w jakich widoczne są źródła światła. W artykule została przedstawiona 
nowa metoda opisu źródeł światła z wykorzystaniem harmonicznych sferycznych. Pozwalają one na wygodny i skuteczny opis położenia źródeł 
światła, jak również ich kształtu w polu widzenia. (Implementacja harmonicznych sferycznych w symulacji źródła olśnienia)  
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Introduction 
Discomfort glare is defined as a condition in which a 

person can feel pain and irritation without any effects of 
reduction in ability to see. Assessment of such a 
phenomenon seems difficult in a case of a practical 
situation of a specific working environment. To measure the 
effect a Unified Glare Rating (UGR) is applied. Factor 
defining the rating is determined by the formula (1), that 
was introduced in CIE documents [1]. The rating is also 
implemented in the European Standard EN 12464-2 [2].  
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where: Lu  – background luminance (cd/m2),  Li – luminance 
of glare source i in the direction of the observer’s eye 
(cd/m2),  – solid angle of the glare source i seen from the 
observer’s eye (sr),  Pi – position index (Guth’s index) for 
the glare source i  according to Guth’s analysis. 

To calculate the value of UGR, knowledge about a 
complex set of parameters is required. They need to be 
associated with proper geometrical conditions. With modern 
computer technology it is possible to substantially facilitate 
required computations.  

Effective UGR value determination can be achieved with 
different solutions. Methods using pinhole camera and 
space division according to set of angles [3] were used. 
Today two groups of techniques may be discussed. First of 
them incorporates usage of simulation applications, deter-
mining luminance distribution. Getting the value of UGR for 
certain view position and direction is one of the features of 
such programs. The second group, that is in use for some 
time, consider application of an array of photometers to 
measure luminance distribution. Same as in case of the first 
group of techniques, the software designed for the 
mentioned instruments allows for calculation of UGR value. 

Main difficulties of measurement of UGR value are due 
to complexity of geometrical relations of the photometric 
quantities in formula (1). This work aims to propose a new 
way of description of positioning lights (sources of glare), to 
gain simplification of UGR calculations. Method described in 
the work uses spherical harmonics.  

 

Spherical Harmonics 
Spherical harmonics (SH) [4] is a set of special functions 

that form a base in spherical coordinates. As the Fourier 
transform produces a set of harmonic frequencies from the 

given signal function, the SH allows for approximation and 
representation of any spherical function in a form of a 
collection of coefficients. The aforementioned basis is 
described by formulas (2-4).  
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Projecting given spherical function onto the spherical 
harmonics domain produces a set of coefficients that gives 
information about how much each of the SH basis functions 
(given by the index of the coefficient) is present in the 
original function. Any coefficient is given with a pair of SH 
band l and octave m, and is defined by the weighted integral 
of the basis function (6). 
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where   and  describe coordinates on the sphere (in    
domain) and denote location of samples. A real-life case of 
integration over a sphere (or a hemisphere) incorporates a 
usage of summing up m samples of the original function. 

The bigger the coefficient index, acquired from band l 
and octave m pair, the more precise the original function 
can be approximated - such a coefficient is an equivalent of 
a high frequency, as in case of the Fourier transform. The 
high-frequency functions are usually small, bright spots on 
the dark background. Given that kind of function describing 
the light distribution on the sphere, representing it via SH 
coefficients requires a lot more of them then in case of a 
function that consists of mainly large, white or gray, smooth 
patches of light (a low-frequency function). Any spherical 
function represented by SH coefficients is reconstructed by 
the formula (7). 
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As the band-octave pair notation is a bit complicated, 
introducing two-dimensional way of addressing coefficients, 
a simplified version of (7) is actually used. It determines a 
SH coefficient index to be i = l(l+1)+m, where l is a band 
and m is an octave ordinal. This way the reconstruction 
equation simplifies to (8). 
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Application of spherical harmonics is very wide. The 
computer graphics application ranges from description of 
area lights [5], to global illumination techniques like 
precomputed radiance transfer (PRT technique) [6]. Usage 
of SH is also noticeable in fields of science like quantum 
mechanics, geophysics or study of magnetism.  

The set of SH coefficients representing a spherical 
function can be treated as a vector. Thus any operations 
normally done on a vector can be applied to a SH vector as 
well. A given set of coefficients can be converted to another 
one, that approximates a different function, by multiplying it 
with a proper transformation matrix. The simplest changes 
in SH vector are applied by scaling and translation 
operations. Such transformations refer respectively to 
scaling or shifting (translating) the original function itself. 
Rotation, on the other hand, is more complicated, due to the 
fact of SH rotation invariance property. Figure 1. shows the 
visualization of the first SH coefficients basis function. 
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Fig. 1. Visualization of the spherical harmonics for the first bands, 
for  l = 1,2,3,4 
 

Light Source description using SH 
For a use in the analysis of glare, a light source can be 

described in two ways. First, the simplest one, is a point 
light source in space with defined luminance and color; 
sometimes also a direction (for spot light sources). Another 
approach consider using a shape of an area light projected 
onto an upper hemisphere. Of course light sources that 
consist only of one point can be done this way as well, 
although that would be very inefficient. Either way, this 
solution forms a spherical function around a certain point P 
that is in the center of the aforementioned hemisphere. 
Such function can be represented by an array of spherical 
harmonics coefficients. To do so, a uniformly distributed 
collection of normalized directions within the upper 
hemisphere (i.e. which cosine factor with a normal in point P 
is above zero) is required to sample the function L, 
representing light distribution on the hemisphere. The 
samples are used for the process of projecting function L 
into spherical harmonics space. Note that number of 
samples used does not directly imply quality of the outcome 

– in a case of a single point-like light source it would be 
better to use only one sample, while a large number of them 
can simply not hit the right spot, resulting in unwanted 
artifacts. This refers also to very small area lights or larger 
ones viewed from afar. 

For a color, RGB light function L, each channel of the 
color of a sample is considered a separate function. This 
implies a need for three separate arrays of coefficients to be 
created. Also this shows that in such a case there will be a 
three times bigger usage of memory required. In any case, 
to get the information back from the coefficients a reverse 
projection is to be applied. 

 
SH Computations' sampling patterns 

Both the SH projection and the reverse process 
(reconstruction) of a function from an array of SH 
coefficients require a set of different samples, or in other 
words sampling directions, defined in the spherical 
coordinates. As stated earlier, any set of such samples 
used for either projection or the reconstruction, have to be 
uniformly distributed on the hemisphere. A starting point of 
such a scheme is to prepare a set of samples within a unit 
square. This way one gets a set of positions in range of 
[0, 1]. It is not that difficult to make them distributed 
uniformly in such a case, but projecting them onto the 
hemisphere requires additional computations [7]. 

Given set of normalized samples (x,y): 0 x1, 0yy1 is 
first projected into a spherical system space, treating their 
positions as points on the surface of the unit sphere. Thus 
the actual latitude a  and longitude aof any sample is 
given with formulas (9) and (10). 
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In case of a hemisphere one can omit the multiplier 2 
before arc cosine function, remembering also to rule out 
any samples that will be out of such a domain (samples that 
has negative dot product between their position vector and 
the hemisphere's “north pole” vector). The two spherical 
coordinates are used in both SH projection and 
reconstruction, to compute a value of the spherical 
harmonics base function for the sample. They are also fit for 
creation of an actual 3D point on the sphere/hemisphere 
using spherical to Cartesian system space transformation. 

Eventually to sample the value of a spherical function, 
one need to bring back the sample positions to normalized 
space. It is required because such functions are in the case 
of our solution represented in a form of a rectangular 
texture. In most situations textures are sampled by 
normalized coordinates, in which case the actual size of the 
texture doesn't matter. In our approach as mentioned above 
basic samples are produced as uniformly distributed points 
within a unit square. Given the latitude a  and longitude a  
angles one need to convert them with simple division 
between their value and the maximum extent for the angle, 
i.e. for a one need to divide it by   for a whole sphere, and 
by   for a hemisphere, while  a requires division by 2  
in any case. The actual implementation requires only the 
first operation to be performed, for the normalized position 
from which the longitude angle was acquired is already 
given from the base uniform distribution. 

Regarding the samples placement, our implementation 
defines two forms of solving the issue. First of them is 
straight forward – given the number of wanted samples N, 
the application computes every next sample to be equally 

distant from the last one by the factor of N/1  horizon-
tally as well as vertically, starting from the “lower left corner” 
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of the data set (first element in the data array). The 
positions are recalculated into actual array of indices further 
in the sampling process. It is done including the linear 
interpolation of their values. Second approach introduces 
the application of jittered sampling [8]. A small, pseudo-
random value is added to every sampling position. Such 
application has an impact on the quality of calculated 
coefficients and eventually the reconstructed image. 

Finally, it is important to add that none of the methods 
like importance sampling [9] or stratified sampling [9] can be 
applied in our solution. Function L, representing the light 
dome, is given as a set of raw data, and thus there are no 
indications that would imply usage of any “intelligent 
sampling” algorithm. Only the naive, uniform sampling 
applies. Additionally the samples shouldn’t be generated 
completely with a use of random generator of any kind, for 
their positions heavily influence the outcome of SH 
projection, especially in case of a close-to-point-like light 
sources. Using randomly generated sampling positions can 
lead to some unwanted artifacts to appear. Only 
randomness used is the one applied with the 
aforementioned jittered sampling pattern. 

 

Implementation 
Implementation of our approach includes two main 

stages of computations, done in separate applications. The 
separation was due to the fact of easier method of storing 
output images using Matlab/Octave scripts. 

First of the stages incorporates spherical harmonics 
creation from a light function, given by a texture data (TGA 
image format). The program, written in C++, loads selected 
texture, samples it with a provided number of samples and 
produces a set of SH coefficients, in a form fit for the 
second stage of the whole process. The generated array of 
coefficients is loaded into a Matlab/Octave script, the 
second stage, that performs the reconstruction operations. 
It stores the outcome also into a TGA image. 

In case of the projection stage, our solution uses double 
precision in representation of any variable used in the 
computations. After loading raw texture data and 
preparations regarding sampling positions for them, a given 
number of sample objects is created. Every sample object 
contains data about the sample direction/position in both 
Cartesian and spherical system of coordinates. Before 
passing the raw texture data to projection routine, they are 
put into a simple array. 

Every element of such an array is actually an inter-
polated value of the source function, given in the mentioned 
data from texture. For each sample, the normalized 
positions are scaled to image size and clamped to nearest 
integer value above and below (floor and ceil operations). 
With thus acquired addresses a linearly interpolated value 
is stored into the array of data passed to projection. 

The projection itself computes SH coefficients on-line, 
according to the formula (6), i.e. the routine does not use 
any form of precomputed data regarding the spherical 
harmonics base functions. All values are calculated on the 
fly. Even though a double precision for variables is applied 
here, for higher indices of SH coefficients the base values 
can become NaN (not-a-number), “spoiling” such a sample. 
This situation occur when an outcome of set of numerical 
computations, eventually being an input for certain types of 
functions (like square root), gets a negative zero value. 
Such a case is caused simply by the fact how floating point 
numbers are represented. Avoiding NaNs incorporates 
checking mentioned outcomes’ absolute value against a 
very small number E - should them be less than E, replace 
them with zero. Implementation of the SH coefficients 
generation has been secured with the simple algorithm. 

Finally the coefficients are used by a simple 
Matlab/Octave script, fulfilling the formulation (8), to 
reconstruct the image of the light source. Precision of the 
variables used here is a standard one used in Matlab or 
Octave (no specific flags for the computations applied). 
Same as in case of projection the reconstruction process 
does not use precomputed data. 

 

The light source on the hemisphere 
The application developed for the paper allows for 

description of light sources via approximation of luminance 
distribution on a hemisphere. The program relies on the 
data stored as a textures, containing values of a certain 
spherical function. The purpose of the application is to 
calculate a vector of SH coefficients, of a predetermined 
length. In the performed tests the length was set to 100 
coefficients, which is 10 harmonic bands. A number of 
different light sources were analyzed, varying in size of the 
patch of light placed on the hemisphere. Any tested source 
was defined as luminance distribution given by the function 
of N-th power of the scalar product between provided vector 
(determining the light spot’s position on the hemisphere, 
defined as a pair of angles, spherical coordinates) and a 
one given as a vector linking the center of the sphere with a 
point on it’s surface. This simple mathematical form 
provides a useful way of simulating light sources of different 
sizes, situated on the hemisphere. Figure 2. illustrates a set 
of examples of used light source functions 

 
 
 
 
 
 
 
 
 

Fig. 2. Simulated light source defined as the N-th power of the 
scalar product between the vector of "linking" the center 
hemisphere with a point on its surface, and a given vector, defined 
by coordinates on the sphere. From the left: N=10, N=20, N=30.  

 
 a) N=10 
      source               16 coeff.              36 coeff.           81 coeff. 

     

 b) N=20 
      source               16 coeff.              36 coeff.           81 coeff 

     

 c) N=30 
      source               16 coeff.              36 coeff.           81 coeff 

    
 
Fig 3. Examples of simulated light source represented in the form 
of spherical harmonics. Original sources are modeled for: a) N=10, 
b) N=20, c) N=30. In the columns SH representations using 
different numbers of coefficients have been shown. 
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For each test, a separate set of SH coefficients was 
created. With such vectors, the second stage of our 
application created ten images (for every vector), showing 
the reconstruction of the original image for a certain number 
of coefficients. The images were created for continuous SH 
bands, meaning for 1, 4, 9, 16 etc. SH coefficients. Figure 
3. contains an example of three test images and three 
reconstructions (each for different band) for every each one 
of them. 

Results clearly show that the most significant and visible 
changes in the reconstruction image are present in case of 
the test images that contain largest patches of light. The 
reconstruction for original image created for N = 10 shows 
the situation. On the other hand, when the original image 
contained much smaller streak of light, e.g. N = 100, much 
more coefficients is required to achieve similar effect. 
Basically the number of used SH coefficients highly 
influences the quality of the reconstruction. It also depends 
on the size of the light spot upon the original image. The 
smaller it gets, the more of the generated SH coefficients is 
to be used for getting a suitable outcome. In some cases 
even the maximum assumed in the test may not be enough. 

 
Summary 

The paper describes application of spherical harmonics 
in simulation of light sources located upon a hemisphere. 
The method used allows for description and approximation 
of light distribution functions with a set of coefficients. From 
the point of view of the computational complexity the 
method is an attractive one. Additionally, a mechanism of 
defining lights sources of different sizes has been proposed. 
It relays on a scalar product of certain vectors.  

The conducted experiments showed that in discussed 
case usage of spherical harmonics is a good idea, but the 
method itself seems to be a slowly convergent process. It 

requires a large number of coefficients to produce proper 
outcome. This leads to conclusion, an additional algorithm 
is required for determination of a proper number of 
coefficients to be used in a case of a particular light 
distribution function 
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