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Another Approach to the Fractional Order Derivatives.

Abstract. This paper presents custom approach to the fractional order derivatives. It is proposed other opportunity to determine equation for fractional
order derivatives calculation. All of the considerations are supported by the numerical examples that show the usefulness of certain properties of the
fractional derivatives. In this article is made an attempt to answer the questions: What is the fractional derivative? When, where and why the fractional
derivative should be used? Which one equation is appropriate for the fractional order derivative calculus?

Streszczenie. W artykule przedstawiono niestandardowe podejście do pochodnych niecałkowitego rzędu. Zaproponowana została możliwość defin-
iowania dowolnych równań pozwalających na wyznaczenie pochodnych niecałkowitego rzędu. Teoria opisana w pracy została poparta przykładami,
które pokazują użyteczność niektórych właściwości pochodnej niecałkowitego rzędu zdefiniowanej dowolnym równaniem. W artykule zrealizowana
została próba odpowiedzi na pytania Czym jest pochodna niecałkowitego rzędu? Kiedy, gdzie i dlaczego pochodna niecałkowitego rzędu powinna
być stosowana? Które równania do wyznaczania pochodnej niecałkowitego rzędu są poprawne?(Inne podejście do pochodnych niecałkowitego
rzędu.)
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Introduction
The derivative is the change of one quantity with respect

to another one. Changes the value of a function x(t) de-
pending on the changes of value of the time t is called the
first order time derivative, and it is denoted by ẋ(t) = dx(t)

dt .
First order derivative can be calculated using the equation
dx(t)
dt = limΔt→0

x(t+Δt)−x(t)
Δt . Changes of the value of the

first order derivative may also occurs over time. That allows

to make a second order derivative d
dt

dx(t)
dt = d2x(t)

dt2 of the
function x(t). Then you can determine third order derivative
d
dt

d2

dt2x(t) = d3

dt3x(t), fourth order derivative d
dt

d3

dt3x(t) =
d4

dt4x(t), and so on d
dt

dk−1

dtk−1x(t) = dk

dtk
x(t). It can be cre-

ated a function f(k) = dkx(t)
dtk

where its argument k is an
integer number. Whether is it possible to create the function
that describes relationship between derivative and its order
as of value from the fields of real number? In 1695 Marquis
de L’Hopital asked Gottfried Wilhelm Laibnitz the analogous
question and received a positive answer: It is possible. It
can be created the fractional derivative where its order is the
value from the field of real number.
Today fractional derivatives may be obtained by the use one
of few known equations [1], [3]. Example of the fractional
integral-derivative can be counted using the Rieman-Liouville
equation:

(1) RL
0 Dα

t f(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

(t− τ)n−α−1f(τ)dτ

where n− 1 ≤ α ≤ n, n ∈ N .
The Grünvald-Letnikov equation:

(2) GL
t0 Dα

t f(t) = limh→0

[
1

hα

k∑
i=0

aαi f(t− hi)

]
1

where t− t0 = kh and

av1 =

{
1 for i = 0

(−1)i v(v−1)(v−2)...(v−j+1)
i! for i = 1, 2, . . .

The Caputo equation:

(3) C
0 D

α
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)

(t− τ)α+1−n
dτ

where n− 1 < α < n, n ∈ N .
All of these equations for fractional derivatives calculation (1)-
(3) are some kind of the interpolation methods of the integer

order derivatives. Which one of them is correct? Which one
of them, when and where should be used? What does it
mean the derivative is the fractional order one?
There is no explanation of the physics of the systems with
fractional derivative described by the equations ((1)-(3). All
of the considerations are based on the analysis of the re-
sponse of the fractional order systems [2], [1], [8], [5].
Well known fractional derivatives defined by Rieman-Liouville
(1), Grünvald-Letnikov (2) or Caputo (3) have valuable prop-
erties in the world of differential equations. Unfortunately,
properties of the fractional derivative are not so clear in
the real systems. Knowledge of the sense of the fractional
derivative is indispensable for modeling real systems. We
cannot create a model of a real system, when we don’t un-
derstand meaning of the derivative. For example, modeling
of the ultracapacitor by the use of the fractional derivatives is
not perfect. Quite often, there is only an approximation of the
phenomena taking place here. In [4] is shown that the frac-
tional derivatives used for modeling the preservation of ultra-
capacitor are not better from the standard derivatives (integer
order). Fractional order derivative sometimes brings descrip-
tion of the ultracapacitor better then the standard derivative
[6], [7], but unfortunately not always.
Not all of uses of the fractional derivative are explainable.
Most unexplainable is modeling banking systems using frac-
tional derivative [10] [11]. Simulation results for banking sys-
tems modeled using the fractional derivative are complex and
hard to explain. It is not surprising that we can’t explain the
sense of the simulation results, when we don’t understand
sense of the fractional derivative.
Fractional order derivative depends on the history of input
signal. The response of each system also depends on the
history of input signal. The dependence of the derivative of
the history of input signal implies a benefit in systems with
delays [1]. Fractional order derivative is also used for model-
ing systems with infinite size of the state vector. An example
might be a long line of RC [1]. Why fractional order deriva-
tives defined by the equations (1)-(3) are not used for model-
ing all long lines?
Main thesis of this article is that we can determine infinite
number of the methods, ways and techniques of the interpo-
lation and calculation the fractional derivative. The equation
for calculation of the fractional order derivative is arbitrary
and obtained by the transformation of the main description
of the system. In this article is made an attempt to answer
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the following questions. What is it fractional derivative? How
should the fractional derivatives be calculated? When, where
and why the fractional derivatives should be applied?

Reduction of the rank of the system
”The operators of fractional derivatives play a role unique

filters that emit only those components that are localized on
the fractal sets the process under investigation” [8]. Frac-
tional derivatives hide some part of dynamics of the system.
Using these allows us to reduce size of the state vector of
the system. Supposing that the derivative can be calculated
using any equation, then the rank of the system can be re-
duced. Finally, rank of the system can be reduced if equa-
tion for the fractional derivative calculus contains some part
of dynamics of the system. Fractional derivatives defined by
Rieman-Liouville (1), Grünvald-Letnikov (2) or Caputo (3) not
always are useful for reduction the rank of the system.

Let’s consider fractional derivatives defined by any equa-
tion. The fractional derivative needs to represent a dynamics
of the system. Using the equation corresponding to the char-
acteristic polynomial of the system the size of the state vector
can be reduced to the rank of the matrix C.
Example 1 Let’s consider system described by the equa-
tions

(4)
ẋ1 = −6x1 − 2x2

ẋ2 = 4x1 + u
y = x1

The characteristic polynomial of the system (4) is equal

(5) det [Is−A] = s2 + 6s+ 8 = (s+ 2)(s+ 4)

so the fractional derivative will be defined by the equation (6).

(6) x′ = ẍ+ 6ẋ

Using the fractional derivative defined by the equation (6) and
the system (4) there can be obtained new system described
by the equations

(7)
x1

′ = −8x1 − 2u
y = x1

The state x and the output y vectors of the system (4) for the
initial conditions x(0) = 0 and u(0) = 0 are equal to [9]

(8)
x1 =

∫ t

0

(−e−2(t−τ) + e−4(t−τ)
)
u(τ)dτ

x2 =
∫ t

0

(
2e−2(t−τ) − e−4(t−τ)

)
u(τ)dτ

y =
∫ t

0

(−e−2(t−τ) + e−4(t−τ)
)
u(τ)dτ

The state x and the output y vectors of the system (7) for the
initial conditions x(0) = 0 and u(0) = 0 are equal to

(9) y = x1 =
∫ t

0

(−e−2(t−τ) + e−4(t−τ)
)
u(τ)dτ

There is no difference between the response signals of the
systems (4) and (7).
Example 2 Let’s consider system described by the equa-
tions

(10)
ẋ =

⎡
⎣ 0 1 −1

0 0 1
−4 0 1

⎤
⎦x+

⎡
⎣ 1

1
0

⎤
⎦u

y =
[
1 0 0

]
x

The characteristic polynomial of the system (10) is equal

(11) det[Is−A] = s3−s2−4s+4 = (s−1)(s−2)(s+2)

then the fractional derivative will be defined by the equation

(12) x′ =
...
x − ẍ− 4ẋ

Using the fractional derivative defined by the equation (12)
and the system (10) there can be obtain new system de-
scribed by the equations

(13)
x1

′ = −4x1 + v
y = x1

where new input signal v is equal to v = ü− u.
The state x and the output y vectors of the system (10) for
the initial conditions x(0) = 0 and u(0) = 0 are equal to
(14)

x1 =
∫ t

0

(
3
4e

2(t−τ) + 1
4e

−2(t−τ)
)
u(τ)dτ

x2 =
∫ t

0

(
8
3e

(t−τ) − 3
2e

2(t−τ) − 1
6e

−2(t−τ)
)
u(τ)dτ

x3 =
∫ t

0

(
8
3e

(t−τ) − 3e2(t−τ) + 1
3e

−2(t−τ)
)
u(τ)dτ

y =
∫ t

0

(
3
4e

2(t−τ) + 1
4e

−2(t−τ)
)
u(τ)dτ

The state x and the output y vectors of the system (13) for
the initial conditions x(0) = 0 and y(0) = 0 are equal to

(15) y = x1 =
∫ t

0

(
3
4e

2(t−τ) + 1
4e

−2(t−τ)
)
u(τ)dτ

There is no difference between the response signals of the
systems (10) and (13).
The results of the Example 1 and the Example 2 are similar.
The rank of the system can be reduced by the use of the
fractional derivative defined by the equation corresponding
to the characteristic polynomial.

Fractional derivatives in the real systems
This section consists considerations about physical

sense of the fractional systems. Considerations presented
below are based on three examples of the standard systems
and theirs transform to the fractional systems. The fractional
derivatives in these systems are determined from the equa-
tions that are obtained after the corresponding math transfor-
mations.
Example 3 Let’s consider the model of the RC system where
capacitor is modeled as an ideal capacitor in parallel with an
ideal resistance Fig.1. Circuit presented on the Fig:1 can be

Fig. 1. The RC circuit with the model of the capacitor as of the
parallel RC circuit.

described by the following equation.

(16) uC
′ =

−1

RC
uC +

1

RC
u

where uC
′ is the fractional derivative defined by the equation

(17) u′
C =

duC

dt
+

1

RCC
uC

The equation for fractional derivative calculation can be ob-
tained by the use of the equation of sum of the currents in the

154 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015



junction

(18) i = iC + iRC
= C

duC

dt
+

uC

RC

Using i = Cu′
C we obtain the equation (17).

Example 4 Let’s consider the model of the RC system where
capacitor is modeled as an ideal capacitor in series with an
ideal resistor Fig.2. Circuit presented on the Fig:2 can be

Fig. 2. The RC circuit with the model of the capacitor as of the serial
RC circuit.

described by the following equation.

(19) uC
′ =

−1

RC
uC +

1

RC
u

where uC
′ is the fractional derivative defined by the equation

(20) uC
′ =

∞∑
i=1

(−RCC)
i−1 diuC

dti

The equation (20) for fractional derivative calculation can be
obtained from the system equations (19) and the sum of volt-
ages in this circuit (21).

(21) u = uR + uC = Ri+ uC

where i = CuC
′ and uC

′ is the fractional derivative of the
signal uC . Using the equations uCC = uC − iRC and i =
C duC

dt , there can be obtained the equation for the calculation
of the current
(22)

i = C
duC

dt
−RCC

2 d
2uC

dt2
+R2

CC
3 d

3uC

dt3
−R3

CC
4 d

4uC

dt4
+...

and finally there can be obtained the equation (20).
Example 5 Analogous result can be obtained for the circuit
presented on the Fig. 3. State equation for this circuit is the

Fig. 3. The RC circuit with the model of the capacitor as of the serial
R with the parallel RC circuit.

same as (16) and (19).

(23) uC
′ =

−1

RC
uC +

1

RC
u

The difference for the previous cases is based only on
change of the equation for the computation of the fractional
derivative of the capacitor voltage.
(24)

u′
C =

uC

C(R1 +R2)
+

∞∑
i=0

(−1)i
Ri

1R
i+2
2 Ci

(R1 +R2)i+2

di+1

dti+1
uC

If the resistance R1 is equal to zero then the equation (24) is
the same as the equation (17). If the resistance R2 is equal
to infinity then the equation (24) is the same as the equation
(20).

Fig. 4. Simulation results uC = f(t) for RC circuit with the model of
the capacitor as of 1.the ideal capacitor 2.the serial RC circuit 3.the
parallel RC circuit 4.parallel R with serial RC circuit.

The figure 4 presents voltages of the capacitors in function
of the time for serial RC circuit and different models of the
capacitor. The input signal is a unit increments. Graph 1 on
the figure 4 shows the voltage of an ideal capacitor. Graphs
2, 3 and 4 show the voltages of the capacitor for the examples
3, 4 and 5, respectively. How easily can see the voltage of
the capacitor for the examples 3 - 5 is not compatible with the
voltage obtained for the ideal capacitor. We can say that the
response of non ideal capacitor corresponds to the derivative
of a different order then the first one.

Conclusions
In this article was taken an attempt to explain the sense

of the fractional order derivatives. Meaning of the fractional
order derivatives defined by the use of any equation is quite
simple: The fractional order derivative contains part of the
system dynamics. Not trivial problem is to clarify the phys-
ical meaning of the fractional order derivatives defined by
the equations designed by Rieman-Liouville (1), Grünvald-
Letnikov (2) or Caputo (3). Most probably, these derivatives
consist a part of complex system dynamics, which one was
not or can not be decomposed. Is it correct when they do not
stem from mathematical transformations?
In the other words, if the equation for the fractional order
derivative calculation contains the part of the system dynam-
ics then the rank of this system can be reduced. In the ex-
amples 3 - 5 the rank of the system was reduced using the
equation for calculation of the fractional order derivative, that
contains description of part of the model of the capacitor.
Description of the system is greatly simplified, when the frac-
tional order derivative represents a fragment of the transmit-
tance (Example1 and Example2). Fractional order derivative
is a kind of filter, which reduces the size of the state vec-
tor to its respective function and examines issues with re-
spect to changes of the value of this function. An example
of reduction of two-dimensional system to the correspond-
ing one-dimensional system is the RC long line. Standard
model of the RC long line is two-dimensional system. Using
fractional derivative we obtain one dimensional system. We
can say that the fractional derivative reduces size of the two-
dimensional system to one dimension.
In this article, problem of the fractional order derivative was
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analyzed for one dimensional linear systems. All of this con-
siderations can be extended for two dimensional systems and
also nonlinear. It is also possible to design nonlinear equa-
tion for fractional order derivative calculation.
Unrestricted definition of the fractional order derivatives
raises many new questions and doubts. They will be the sub-
ject of further works on the proposed approach to the prob-
lem of the fractional order derivative. An example of a real
and significant issue for the proposed fractional derivative is
the problem of the motion control of the truck. Dynamics of
this car depends on the transported cargo. Driver steers the
truck properly, even when dynamics of this car changes very
much. New question arises: How to control an object to ob-
tain response signal which is independent on the internal and
unobservable dynamic?
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