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Abstract. The classic genetic algorithm has been successfully applied to many optimization problems. However, its usefulness is limited when it 
comes to feature selection, particularly if a high reduction rate is expected. The algorithm, in its classic version, returns feature sets containing 
approximately 50% of the total number of features. In order to decrease this rate, a penalty term penalizing individuals of too many features is often 
added to the fitness function. This solution seems to be reasonable but, as will be shown in this paper, provides only a slight improvement in the 
reduction rate. In order to obtain a satisfactory classification accuracy and a high reduction rate, not only the fitness function but also other algorithm 
elements must be reconsidered. 
 
Streszczenie. Klasyczny algorytm genetyczny był z powodzeniem stosowany w wielu problemach optymalizacyjnych, jednakże jego użyteczność 
jest ograniczona w problemach selekcji cech, zwłaszcza jeżeli wymagana jest wysoka stopa redukcji cech. Algorytm, w jego klasycznej wersji, 
zwraca zbiory cech zawierające około 50% pierwotnej liczby cech. W celu zmniejszenia tej liczby, do funkcji przystosowania algorytmu dołącza się 
często człon kary, karzący osobniki kodujące zbiory o zbyt dużej liczbie cech. Takie rozwiązanie wydaje się być rozsądne, ale, jak zostanie to 
przedstawione w artykule pozwala jedynie na niewielką poprawę stopy redukcji. Stąd, w celu uzyskania satysfakcjonującej dokładności klasyfikacji i 
wysokiej stopy redukcji, nie tylko funkcja przystosowania, ale również inne elementy algorytmu muszą zostać wzięte pod uwagę (Klasyczny 
algorytm genetyczny, a algorytm z agresywną mutacją w procesie selekcji cech na potrzeby interfejsu mózg-komputer). 
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1. Introduction 

According to the strict definition the brain-computer 
interface (BCI) is a system in which a user sends the control 
commands or text messages with the exclusive use of the 
brain activity. There is also a more liberal approach 
according to which two types of BCIs can be distinguished, 
a dependent BCI and an independent BCI. While in the 
dependent BCI the brain activity is recorded together with 
other types of activity, such as eye lids or face muscles 
movements, the independent BCI allow only the brain 
waves to be recorded. Regardless of the BCI type, in order 
to decide which command has been intended by the user, 
the brain activity has to be measured, usually with EEG 
device, and analyzed.  

The automatic analysis of EEG signal is very difficult for 
two main reasons. First, the signal is almost always 
contaminated with artifacts, second, there is a huge space 
of possible features describing this signal. In order to deal 
with the first problem methods for removing artifacts are 
used (e.g. spatial filters, frequency filters, Independent 
Component Analysis etc. [1, 2, 3]). To address the second 
problem the methods for feature selection have to be 
applied (e.g. step-wise selection [4, 5], ReliefF [6], 
Correlation-based Feature Selection [7], genetic algorithms 
[8], LASSO [9], random selection [10] etc.). The paper 
regards the second problem, i.e. the feature selection 
problem.   

There are at least three main reasons why feature 
selection is necessary when decoding EEG signals for BCI 
purpose. The first of them is a very limited number of 
training examples that can be gathered for the classifier 
training. Since the brain waves are subject specific, it is 
impossible to gather data from a set of subjects and to train 
a classifier on the joined data set. Just on the contrary, 
each subject must obtain his own classifier, adapted to his 
specific brain activity patterns. As a result of a habituation 
phenomenon, changes in the subject's mental condition, 
health problems etc., the number of trials that can be 
performed with one subject is very limited. Usually only 
about 100-300 observations are recorded from one subject. 
Comparing this number to the thousands of features that 
can be extracted from raw EEG signal, it is obvious that for 

a proper classifier training a huge reduction of the feature 
space is necessary. 

The second reason for using feature selection 
techniques when designing a BCI system is the possibility 
of decreasing the number of electrodes applied on the user 
head. If during the feature selection process all the features 
extracted from some channels were discarded as 
unimportant for the classification precision for the given 
subject, these channels could be eliminated from the BCI 
system prepared for this subject. Since fewer channels (and 
so fewer electrodes) means less time for the interface 
application, the massive feature elimination can increase 
the user comfort and decrease the overall cost of the 
interface. 

On top of that, due to elimination of unnecessary 
features, the interface can respond faster to the user mental 
acts. This is not only because fewer features needs less 
time to be extracted but most of all because of the 
possibility of eliminating features describing phenomena 
that need time to evolve. A good example here is an event 
relation synchronization (ERS) in  frequency band that can 
be detected in EEG signal about 5-6 seconds after the 
movement onset. If all the features describing  ERS 
phenomenon were eliminated from the feature space during 
feature selection, the time needed for the analysis of each 
portion of EEG signal recorded from the given subject could 
be shorten of about two-three seconds.  

There are a lot of methods that can be used for feature 
selection. Some examples were given at the beginning of 
the paper. One of the method that is popular in BCI 
research is that of genetic algorithms (GAs) [8, 11, 12, 13]. 
Theoretically, different genetic algorithms can be used in 
the feature selection process (e.g. algorithm coding all 
features [8, 11], Culling algorithm [12, 13], nondominated 
sorting genetic algorithm-II (NSGA-II) [14], algorithm with a 
limited number of features [15], etc.). In practice however, 
usually the simplest approach, i.e. the algorithm that codes 
all the features within each individual guided by pure 
classification accuracy, is used. This approach is easy to 
implement, but has one weakness: by using pure 
classification accuracy as a fitness function, the 
optimization algorithm tries to find individuals with 100% 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 2/2015                                                                               99 

classification accuracy, regardless of their number of 
features. Hence, when a genetic algorithm is used in the 
feature selection process, more sophisticated approaches 
to coding individuals or more sophisticated fitness functions 
should be used.  

One of the possible solutions is to extend the fitness 
function by using a penalty term, penalizing individuals 
coding too many features. This is usually a good solution 
but the question is whether it will bring expected results 
when a very small feature set will be searched. The aim of 
this paper is just to answer this question. In order to deal 
with this task the genetic algorithm with extended fitness 
function will be used to select features from a set of 324 
features extracted from a data set submitted to the second 
BCI Competition (data set III – motor imagery) by 
Department of Medical Informatics, Institute for Biomedical 
Engineering, Graz University of Technology [16]. The 
results returned by this algorithm will be compared with 
results obtained with two genetic algorithms guided by pure 
classification accuracy, the classic genetic algorithm and 
the genetic algorithm with aggressive mutation.   

  

2. Methods 
Three genetic algorithms were used in the survey: the 

classical genetic algorithm proposed by Holland, the classic 
genetic algorithm with a penalty term in the fitness function, 
and the genetic algorithm with aggressive mutation. 

 

2.1. Classic genetic algorithm 
The classical genetic algorithm is one of the most 

popular genetic algorithms used for feature selection. In this 
approach, an individual contains only one chromosome of 
the length equal to the number of all the extracted features. 
Each gene holds information about whether the 
corresponding feature is present in the solution that is 
encoded within the individual (allele 1) or not (allele 0). For 
example if the feature space contains 10 features, an 
individual of a genotype 0110001101 encodes the set of 
features composed of features: 2, 3, 7, 8, and 10. The 
scheme of the classical genetic algorithm is as follows. First 
the initial population of individuals is randomly drawn from 
the whole set of possible solutions. Next the individuals are 
evaluated according to the chosen fitness function and the 
stop condition of the algorithm is tested. If the stop condition 
is not met, the selection process is started. There are a lot 
of different selection approaches but in most of them, the 
individuals of the higher value of the fitness function have 
higher chances to be chosen to the mother population. The 
individuals from the mother population are then processed 
according to the applied genetic operators. Usually two 
genetic operations are performed one after another, 
crossover and mutation. After the second operation, the 
final population composed of the individuals born during 
genetic operations is created and the whole cycle of 
evaluation, selection and genetic transformations is 
repeated until the stop condition of the algorithm is met. 

 
2.2. Classic genetic algorithm with a penalty term 

When the classic genetic algorithm is used for feature 
selection, the individuals are evaluated according to the 
classification accuracy that can be obtained with features 
encoded in these individuals. That means that for each 
individual a classifier is created. This classifier takes as 
inputs all the features encoded in the individual. After the 
classifier training, its accuracy is evaluated and used 
directly as a fitness value of the individual. The problem is 
that the feature selection process is not aimed at finding a 
feature set of the highest classification accuracy, but at 
finding the smallest possible feature set of the sufficiently 
high classification accuracy. Considering the real goal of the 

feature selection process, the fitness function based only on 
the classification accuracy is not the best choice.  

The approach that can be taken to make the classic 
genetic algorithm more suited to the real goal of the feature 
selection process is to extend the fitness function of the 
genetic algorithm by adding an additional component, 
penalizing the individuals for coding too many features. 
Assuming that both terms (the accuracy term and the 
penalty term) have the same weight, the fitness function of 
the genetic algorithm can be given as follows: 

 

(1)   
T
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AF


 5.05.0   

 

where: F – fitness function, A – classification accuracy, T – 
number of all the extracted features, O – number of features 
encoded in the individual. 

 

The additional term in the fitness function is the only 
difference between the algorithm from the previous section 
and the algorithm described here. All the algorithm steps 
from the random choice of the initial population to the 
applied genetic operators remain the same.  

 
2.3. Genetic Algorithm with aggressive mutation 

After  adding the penalty term to the fitness function the 
optimization process has two goals: minimization of the 
value of the penalty term and maximization of the 
classification accuracy. Simultaneous two-direction search 
is difficult and needs much more time for finding the 
satisfactory result than one-direction search. The question 
is whether this two-direction search is really necessary. 
Often when the feature selection process is performed, the 
number of features that can be applied in the classifier 
(because of the technical background, the user's needs or 
other reasons) is known in advance. In such situation the 
goal of the selection process changes once again and now 
is as follows: for the given number of features, find the 
feature set that provides the satisfactory accuracy. Such a 
situation is well known in the BCI domain where because of 
a very small number of observations that can be gathered 
for the classifier training, only a few features are often 
allowed.  

A genetic algorithm that can be used when the number 
of features is given in advance is the algorithm with 
aggressive mutation (GAAM), proposed a year ago by one 
of the authors of this paper [17]. This algorithm uses the 
integer coding system, where one gene contains an index 
of one feature from the feature set encoded in the 
individual. Hence, the number of individual's genes is equal 
to the number of features required by the user. The integer 
coding scheme is the first feature that differs GAAM from 
the classic GA. The next is the order of two the most 
important steps of the genetic algorithm, selection and 
reproduction. In GAAM the reproduction takes place before 
the selection. During the reproduction step, the mother 
population is enlarged by adding new born individuals and 
during the selection step the population is reduced to its 
original size by selecting individuals with the highest value 
of the fitness function.  

The last difference between GAAM and the classic 
genetic algorithm is the mutation operation. In GAAM the 
mutation scheme is very aggressive - not only each 
individual in the population is mutated, but also each of 
gene of that individual. To be exact the mutation scheme is 
as follows: 
 
for i=1 to M 
 take an individual i 
 for g=1 to N 
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  take a gene g 
assign a random value from the interval {0,1,2...P} 
to the gene g 

  save the individual i as a new individual. 
  

where: M - number of individuals in the mother population, 
N - number of genes in an individual, P - total number of the 
extracted features.  
 

3. Experiment settings 
The benchmark data set used for the algorithms' 

comparison [16] was recorded from a normal subject 
(female, 25y) whose task was to control the movements of 
a feedback bar displayed on a screen by means of imagery 
movements of the left and right hand. During the 
experiment EEG signals were recorded. They were 
measured over three bipolar EEG channels (C3, Cz and 
C4), sampled at 128Hz and preliminarily filtered between 
0.5 and 30Hz. The whole data set contained 280 trials, but 
only 140 of them were published with target values (1 - left 
hand, 2 - right hand).  

In order to obtain a feature set for the algorithms' 
comparison, 324 frequency band power features were 
extracted from the raw EEG signals. The band power was 
calculated individually for: 
 12 frequency bands: alpha band (8-13Hz), five sub-

bands of alpha band (8-9Hz; 9-10Hz; 10-11Hz; 11-
12Hz; 12-13Hz), beta band (13-30Hz), and five sub-
bands of beta band (13-17Hz; 17-20Hz; 20-23Hz; 23-
26Hz; 26-30Hz), 

 each of 9 seconds of the trial, 
 each of 3 channels (C3, Cz, C4). 

The main aim of the survey reported in this paper was to 
reduce the whole set of 324 features to the set of only few 
features providing a high classification accuracy. In order to 
evaluate the classification accuracy of each of the feature 
sets processed during the survey, a classic linear SVM 
classifier was used [18, 19]. To adapt the data set to the 
SVM classifier requirements, the class labels were changed 
to -1 for the left hand and to 1 for the right hand. The 
classification threshold was set to 0, such that all the 
classifier results greater than 0 were classified as right hand 
and all the results smaller or equal to 0 were classified as 
left hand.  

In the case of all three algorithms a separate classifier 
was built for each feature set from each population. Each 
classifier was trained over the training set containing 80% of 
data. The remaining 20% was reserved for the testing 
process. During the classifier training the 10-fold cross-
validation scheme was used. To calculate the accuracy 
term for the fitness function the mean value calculated over 
the classification accuracy obtained for all 10 validation 
subsets was used.  

Each time when the genetic algorithm stopped, the 
individual with the highest value of the fitness function was 
returned. The indexes of features encoded in this individual 
were then introduced as inputs to the final classifier that 
was trained over the whole training set and tested over the 
testing set. If the accuracy calculated over the training set 
was higher than the accuracy calculated over the testing 
set, the classifier was marked as an overfitted one and 
excluded from further comparisons. In the opposite case, 
the average classification accuracy over the whole set of 
140 observations was calculated as the final measure of the 
classifier performance.  

 

4. Results and discussion 
At the first stage of the survey the classic genetic 

algorithm guided by pure classification accuracy was run. 
Since genetic algorithms generally find sub-optimal 

solutions, the algorithm was run ten times. The main 
parameters of this algorithm were set as follows: 100 
individuals, 1 chromosome per individual, 324 genes per 
chromosome, 250 iterations. Each individual coded one 
subset of the feature set. The initial population was chosen 
randomly (using uniform probability distribution). Two 
classic genetic operations were used: one-point crossover 
(with a probability of 0.8) and one-gene mutation (with a 
probability of 0.025). Individuals that proceeded to the next 
population were selected according to the tournament 
method. Each tournament was run among the random 
number of individuals chosen randomly from the mother 
population. Table 1 presents the results of the best 
individuals from each run. The succeeding columns of the 
table denotes: No. of features: number of features encoded 
in the individual; Train, Test and Total: the classification 
accuracy of the final classifier calculated over the training, 
testing and the whole set, respectively. Total is equal to "-" 
for overfitted classifiers.  

 

Table 1. Results obtained from ten runs of the genetic algorithm 
guided by pure classification accuracy  

 

The second algorithm used in the survey was the 
genetic algorithm with a penalty term in the fitness function. 
The algorithm parameters, except from the fitness function 
were set at the same levels as in the first stage. The fitness 
function was composed of two terms, the accuracy term 
and the penalty term. Both terms have equal weights. The 
algorithm results returned in all ten runs are presented in 
Table  2. The succeeding columns of the table denotes: 
Fitness: value of the fitness function; Accuracy: 
classification accuracy calculated over 10 validation sets; 
Penalty: value of the penalty term of the fitness function; 
No. of features: number of features encoded in the 
individual; Train, Test and Total: the classification accuracy 
of the final classifier calculated over the training, testing and 
the whole set, respectively. Total is equal to "-" for overfitted 
classifiers. 

At the last stage of the experiment the algorithm with 
aggressive mutation was applied to reduce the feature set. 
In order to decide how many features should be introduced 
to the individuals, Raudys recommendation [20] was taken 
into account. According to this recommendation in order to 
train a classifier properly at least 10 times more 
observations per class as the features should be gathered. 
In view of a data set composed of 140 observations, an 
individual should encode about 6 features. Since the coding 
scheme used in the algorithm with aggressive mutation is 
based directly on feature indexes, an individual that 
encodes 6 features must have 6 genes. The remaining 
parameters of the algorithm were: 30 individuals and 100 
iterations. With these settings, the selection pool in each 
population was composed of 240 individuals (30 mother 
individuals, 180 individuals created during mutation, and 30 
individuals created during crossover). The algorithm results 

 No. of features Train [%] Test [%] Total [%]

1 151 100 85.71 - 

2 151 100 92.86 - 

3 170 100 89.29 - 

4 153 100 92.86 - 

5 153 100 96.43 - 

6 152 100 92.86 - 

7 144 100 92.86 - 

8 157 100 89.29 - 

9 165 100 92.86 - 

10 153 100 85.71 - 
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are presented in Table 3. The succeeding columns of the 
table denotes: Indexes of features: indexes of features 
encoded in the individual; Train, Test and Total: the 
classification accuracy of the final classifier calculated over 
the training, testing and the whole set, respectively. 
 
Table 2. Results obtained from ten runs of the genetic algorithm 
with a penalty term in a fitness function 

 
Table 3. Results obtained from ten runs of the genetic algorithm 
with agressive mutation 

 
According to the results presented in Tables 1 and 2 

both classic genetic algorithms are not very useful when 
comes to find a feature set of a high classification precision 
and small number of features. Both GAs returned feature 
sets composed of much too large number of features. Of 
course the results returned by the algorithm with a penalty 
term were slightly better (this GA eliminated on average 
about 20% of features more than the classic GA), however, 
still the size of the feature set in the best case was equal to 
111 features. Moreover all classifiers built over the feature 
sets returned by both algorithms were overfitted  

The results returned by GAAM were very good in all ten 
runs. The average classification rate across ten runs was 
about 94%, and none of the classifiers were overfitted. 
Moreover, the feature sets returned in different runs were 
similar. Some of the features reappeared even in more than 
50% of all the chosen feature sets. 

The results of the GA with a penalty term were 
surprising for the authors of this paper and therefore a lot of 
additional experiments were performed. The goal of these 
experiments was to find out whether different weights 
assigned to both terms of the fitness function would allow to 
increase the impact of the penalty term on the optimization 
process. None of these experiments gave the satisfactory 
results. Regardless of the weight of the penalty term, the 
number of features in the individual was always higher than 
100. That proves that introducing a penalty term to the 
fitness function is not enough to obtain a genetic algorithm 

that is able to reduce the feature space in a high degree. 
The problem is that the whole scheme of Holland GA is not 
suited for this task. Why? The first problem is with the initial 
population. If it is drawn randomly (using uniform probability 
distribution) about 50% of individuals' genes are equal to 
one, and the remaining genes are equal to zero. That 
means that each individual encodes about 50% of all the 
features from the feature space. Since the probability that a 
large number of ones will be discarded from the population 
with the classic crossover and the classic mutation is very 
low, the algorithm from the beginning prefers individuals of 
the higher classification accuracy. 

The solution could be to start the algorithm from the 
individuals encoding only the given number of randomly 
chosen features. In such the case however, another 
problem would arise. With a such scheme it would be much 
easier for the algorithm to obtain better classification 
precision after increasing the number of features than after 
decreasing it. Of course this time the algorithm would stop 
with a smaller number of features than when using uniform 
probability distribution but this number would be much 
higher than that given at the beginning of the algorithm.  

That best solution is when the algorithm starts with a 
small number of features and sticks to this number all the 
time. This, however, needs the changes at least in the 
coding approach and in the genetic operations. The 
algorithm that fulfills both requirements is the algorithm with 
aggressive mutation. This algorithm uses the coding 
scheme that allows to determine the number of features in 
the feature set and uses the mutation scheme that 
guarantees a high variability of the succeeding populations.  

 
5. Conclusion 

Among all three genetic approaches to feature selection 
applied in the reported survey only the third one (the 
genetic algorithm with aggressive mutation) returned the 
meaningful results that can be used in practice. The classic 
genetic algorithm in both versions returned results that were 
not only useless (all the classifiers built over the feature 
sets returned by the algorithm were overfitted) but also not 
very practical (because of too large number of the chosen 
features). Therefore, the final conclusion of the paper is that 
when a high reduction rate is expected during the feature 
selection, not only the fitness function but also other 
algorithm elements have to be redefined. 
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