
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 12/2015 237

Łukasz NOZDRZYKOWSKI1, Magdalena WRÓBEL2

Maritime University of Szczecin, Institute of Marine Technologies (1), Maritime University of Szczecin, Institute of Marine Technologies (2)

doi:10.15199/48.2015.12.61

Analysis of the significance of model parameters for program
loop execution time estimation

Streszczenie. W artykule przedstawiono modele szacowania czasów wykonywania się pętli programowych w formie zrównoleglonej oraz
przedstawiono analizę istotności parametrów stosowanych do tego szacowania. Analiza istotności pozwala określić trafność doboru poszczególnych
parametrów oraz wskazać parametry o niskiej istotności, które można byłoby zredukować. Modele szacowania czasów wykonywania się pętli
programowych w formie zrównoleglonej

Abstract. Models for estimating execution times of parallel program loops are discussed. The significance of parameters used for such estimation is
analyzed. The significance analysis permits to determine the validity of parameters selected for estimation and to identify low significance
parameters that may be eliminated.

Słowa kluczowe: pętle programowe, szacowanie czasu, analiza istotności, teoria zbiorów przybliżonych.
Keywords: program loops, time estimation, significance analysis, rough set theory.

Introduction
The development of information technology systems

and growing demand for high computing power have drawn
attention of many specialists to multithreaded systems,
which employ parallel programming for data processing.
The parallelization of operations allows their acceleration,
which is of vital importance for program loops, as these
often take most of the time. An individual user may take a
long time to carry out the parallelization of a sequential
application, particularly where data dependency occurs.
Another element requiring a lot of time and resources is the
process of profiling needed for choosing optimal parameters
of parallelization. Parallelization, however, sometimes fails
to bring the intended outcome. Hence it is important to
determine the rate of accelerating the code execution,
especially parallel program loops. To determine the
acceleration, we can use models of program loop execution
time estimation based on their source code and parameters
characterizing the runtime environment.

This article analyzes the significance of parameters of
authors' models for the estimation of execution times of
program loops in order to prove the correctness of models
and parameters adopted in these models. The analysis has
been based on the rough set theory and soft reduction of
conditional attributes.

Models of program loop execution time
The parallelization of program loops may be a difficult

operation due to dependencies occurring inside the loop
body or/and dependencies between iterations. To execute a
correct parallel loop, we have to honor dependencies by
transforming a program loop or by using a program loop
transformation that honors dependencies [1]. The following
dependencies are distinguished: flow dependency, where a
datum is first saved in computer's memory, then it is read
out; anti-dependency, where a datum is first read out, then
a new piece of information is added to the datum, and
output dependency, where a piece of information is added
to a datum, then a new item of information is again saved
[2]. There are no dependencies in sequential programs
because subsequent code lines are executed in a
sequence. In parallel programs the sequence of executing
the individual code lines can be changed because various
fragments are being executed by separate threads [3].

Program loops may have dependencies within a loop
body or there may be dependencies between iterations, or
the two types of dependencies may co-exist. These
dependencies may be honored by using the FAN, PAR and
PIPE transformations [4]. The FAN transformation is used

when there is no dependency in the program loop or
dependencies exist inside the loop body, other types of
dependency are not allowed. The PAR transformation is
used when there are dependencies between iterations, but
no dependencies can occur between instructions in a loop
body. The two types of dependencies are allowed in the
PIPE transformation. [4,5]

Loop execution time estimation with the FAN, PAR and
PIPE transformations

The authors in [5] propose models of program loop
execution time estimation for FAN and PAR
transformations. For the PIPE transformation, a conversion
is proposed to a form compatible with the FAN or PAR
transformation.

The time-estimating model conforming with the FAN
transformation for multithreaded computers is described by
the formula (1).

(1)    
1

K k i k
d i w ik

p

r l z
T n wm l c t

l n
   

where: r - time of single operation execution, w –
communication time, li – number of iterations (for nested
loops all the iterations are summed up), md – amount of
data required for computations for a thread, z – number of
operations within a loop, lp – number of pipeline stages in
the processor, cw – time of threads synchronization, ti – time
of measurement initiation, k – type of data locality, n –
number of threads.

 In the model (1) the time of executing a single code
instruction was measured for various data localities. The
number of locality measurements is determined by the
examined program loop. The execution time for a parallel
program loop is a sum of the product of individual execution
times for an instruction with a given locality multiplied by the
number of operations on the variable with that locality, and
the number of iterations. This product is divided by the
number of threads and number of pipeline stages in the
processor. The calculated sum is the time of loop execution
on a preset number of threads. This time value should be
added to the time of data transmission between the threads
(w*md*li). The time of transmitting a single datum w has
been multiplied by the number of data required for the
threads md and the number of iterations li. Finally, the time
of synchronization between threads and the time of
measurement initiation were added. The parameters rk, w,
cw and ti were measured in the testing environment. For a

238 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 12/2015

new testing environment, new measurements of these para-
meters have to be carried out. An example method of me-
asuring the parameters rk, w, cw and ti is shown in Listing 1.

r t1=omp_get_wtime();
 for(i=0;i<n;i++){}
t2=omp_get_wtime();
time_for=t2-t1;
 t3=omp_get_wtime();
 for(i=0;i<n;i++){
 c1 = a1 + b1;
t4=omp_get_wtime();
r= t4-t3- czas_for

w #pragma omp parallel sections{
 #pragma omp section{
 t1=omp_get_wtime();
 t3=t1;
 for(j=0; j<i; j++){
 buff[j]='a';}
 t4=omp_get_wtime();}
 #pragma omp section {
 while(buff[i-1]!='a'){}
 t2=omp_get_wtime();}}
 t5=omp_get_wtime();
 for(j=0; j<i; j++){}
 t6=omp_get_wtime();
 for(j=0; j<i; j++){
 buff[j]='0';}
 time_for=t6-t5;
 time_zap=t4-t3;
 time_cal=t2-t1;
 w= czas_cal - czas_zap - czas_for;

cw omp_set_num_threads(n);
 #pragma omp parallel{
 if(omp_in_parallel()){
 i = omp_get_thread_num();
 t1[i]=omp_get_wtime();}
#pragma omp barrier
 i = omp_get_thread_num();
t2[i]=omp_get_wtime();}}
cw=mean(t2-t1)

ti t1=omp_get_wtime();
t2=omp_get_wtime();
t=t2-t1;

Listing 1 – the method of determining individual parameters.

 The parameters comprised in list. 1 should be
determined each time the program loop execution time is
being estimated. This is due to the fact that during a
program loop tested computer's sub-units have variable
loads. The method of determining the parameter r is
modified to suit data locality.
 Another model for program loop execution time
estimation makes use of the PAR transformation. The
model has this form (2).

(2)    1 1

1

max n k i k
i d i wi ik

p

r l z
T n w m c t

i l n
   

 Parameter symbols are identical to those used for the
FAN transformation model. In the model (2) the maximum
time, meaning the critical path of that algorithm, is chosen.
For each path in the algorithm time is estimated similarly to
the method for the FAN transformation. Of all time
estimates, the maximum time is chosen.
 The presented models (1, 2) of program loop execution
time estimation have been compared to real measurements
of loop executions from the NAS parallel benchmark [6]
discussed in [7]. The errors of model-based estimation for
selected loops are given in table 1. The complete results of
model-based estimation are given in articles [5,7].
The results presented in table 1 show that the average error
of the models (1, 2) amounts to 16.425%. The maximum

estimation error was 36.63%, while the lowest value of
estimation error equaled 0.5%. Table 2 presents the
matching of the models to real loop measurements.

Table 1. Errors of estimating by the models (1, 2)

 Models (1), (2)
Threads num.

Loop name
2 4 6 8

MG_mg_f2p_1 11.75 20.28 23.48 13.58
CG_cg,f2p_6 2D 16.46 4.60 15.50 23.58
MG_mg_f2p_4 2D 12.85 9.59 0.50 1.53
CG_cg,f2p_6 17.85 2.36 29.28 22.08
Seidel 1.96 23.67 24.29 28.20
MG_mg.f2p_4 36.63 35.74 10.57 7.88

Average 16.25 16.04 17.27 16.14

Table 2. Linear correlation of the models (1,2) with the real results

Loop name Pearson Linear Correlation
MG_mg_f2p_1 0.974175565
CG_cg,f2p_6 2D 0.792099983

MG_mg_f2p_4 2D 0.961035177
CG_cg,f2p_6 0.890530692
Seidel 0.991540911
MG_mg.f2p_4 0.864850576

 Pearson linear correlation presented in table 2 is strong
and positive, which proves that the models fit well to real
times of program loop execution. The average correlation
for the models was 0.91, with the lowest value 0.79, while
the greatest correlation amounted to 0.99.

Analysis of parameter significance
 To analyze the significance of individual parameters
which allow estimation of program loop execution time, we
have used soft reduction of conditional attributes based on
the relative probability of useful rules in the rough set theory
[8, 9]. The analysis was based on real measurements
performed in the testing environment of program loop
execution times. All parameters required in the models
estimating the time were determined for that environment.
 The use of soft reduction of conditional attributes will
allow rejecting those attributes whose removal will not lead
to a decreased number of rules generating completely
certain rules [10]. The method permits to evaluate the
quality of rules based on relative probability of the atomic
rules. The probability is expressed by this formula:

(3)
L

P
Pw 

where: P - sum of the probabilities of useful atomic rules, L
– number of elementary conditional sets.

 An atomic rule, generated for a single elementary set, is
said to be useful when its probability is higher than a preset
tested threshold, above which the rule can be considered
as useful. By specifying decision and conditional attributes
and coding them properly, we make an analysis by the
reduction of individual conditional attributes and the
determination of their significance in generating certain
rules. If we use the soft reduction of conditional attributes,
the reduction will result in a slight drop of the number of
items generating completely certain rules.
 The performed significance analysis was based on
32,133 measurement results of the execution time of all
program loops from the NAS benchmark [X]. The NAS
benchmark includes programs characteristic of irregular
access to memory, enhanced communication, or the use of
multi-dimensional tables.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 91 NR 12/2015 239

Time Time measurements were done for various loads
on an eight-threaded processor Intel Core i7-2600 with 8GB
DDR3 RAM. The rules analyzed were those with relative
probability above 80 %. Additionally, an analysis was made
for the probability greater than 90 %.
 In the significance analysis of parameters used for
estimation of program loop execution times, conditional
attributes are parameters of models (1,2). The decision
attribute is the time of program loop execution. Attribute
coding was done by the method of equal number of
samples on the intervals, dividing each of them into 5
intervals. Attribute coding for the runtime environment was
done as shown in table 3.

Table 3. Attribute coding.
Attribute Intervals accepted for coding
Execution time (0, 0.026, (0.026, 0.073, 0.073,

0.116,(0.073, 0.116, (0.116, ∞)
r (0, 6.9e-10, (6.9e-10, 7.1e-10, (7.1e-

10, 7.3e-10, (7.3e-10, 7.6e-10, (7.6e-
10, ∞)

w (0, 1.8e-8, (1.8e-8, 2.1e-8, (2.1e-8,
2.4e-8, (2.4e-8, 2.75e-8, (2.75e-8, ∞)

lw (1, 3, (3,4, (4,5, (5,7, (7,8
li (0,7500000,

(7500000,25000000,
(25000000, 50000000,
(50000000, 80000000,
(80000000, ∞)

md (0, 2, (2,3, (3,4, (4,5, (5, ∞)
z (0, 6, (6,8, (8,9, (9,19, (19, ∞)

 We have determined the number of elementary sets of
atomic useful rules and the relative probability of all atomic
useful rules for an unreduced set of conditional attributes.
The analysis results are presented in table 4.

Table 4 – The analysis results for an unreduced set of conditional
attributes
Probability Pw 0.8 0.9
Number of elementary
sets

3941 3941

Number of atomic
useful rules

2819 2615

Relative probability of
all atomic useful rules

0.703 0.661

As a result of the analysis performed using the rough
sets theory and soft reduction of conditional attributes, we
have obtained significance levels of individual conditional
attributes, presented in tables 5 and 6, for two levels of
probability: 0.8 and 0.9.

Table 5. Analysis of conditional attribute significance at Pw = 0.8.
Condi-
tional
attribute

Number of
elementary
reduced
sets

Number
of
atomic
useful
reduced
rules

Relative
probability of
all atomic
useful
reduced
rules

Attribute
significance

r 960 623 0.63 0.11
w 961 609 0.62 0.12
lw 943 613 0.63 0.10
li 1460 683 0.45 0.36
md 2539 1362 0.52 0.26
z 2189 1303 0.58 0.17

It follows from the analysis results that the most
significant attribute is the number of iterations li, whose
significance for Pw = 0.9 amounts to 43 percent. Other
parameters of large significance are the amount of data
required for computations by a thread md (32%) and
number of operations within a loop z (18%). The least

significant are the time parameters r and w, the time of a
single operation, and data transmission, respectively.
Nevertheless, at the significance level of 15 % for Pw=0.9
these attributes should not be reduced. The results show
that the parameters used in the time execution estimation
models have a high significance and should not be reduced.

Table 6. Analysis of conditional attribute significance at Pw = 0.9.
Condi-
tional
attribute

Number
of
elementa
ry
reduced
sets

Number of
atomic
useful
reduced
rules

Relative
probability of all
atomic useful
reduced rules

Attribu
te
signific
ance

r 960 540 0.56 0.15
w 961 549 0.57 0.14
lw 943 527 0.55 0.16
li 1460 547 0.37 0.44
md 2539 1145 0.45 0.32
z 2189 1184 0.54 0.18

Summary
 In this article, presenting models of program loop
execution time estimation based on the source code of the
loop and parameters characterizing the program
environment, we have proved that the selected parameters
for the models are correct. The significance analysis of
individual parameters was based on the rough set theory
and aimed at identifying parameters that might be
eliminated from the models. From the analysis results we
conclude that the examined attributes are very useful and
should not be reduced. Their selection and high
effectiveness in program loop execution time estimation, as
herein proved by these authors, confirm that the proposed
models are designed correctly.

REFERENCES
[1] Allen R., Kennedy K., Optimizing Compilers for Modern

Architectures: A Dependence-based Approach, Morgan
Kaufmann, 2001

[2] Pałkowski M., Algorytmy zwiększające ekstrakcję równoległości
w pętlach programowych, praca doktorska, Politechnika
Szczecińska, 2008

[3] Czech Z, Wprowadzenie do obliczeń równoległych,
Wydawnictwo PWN, 2010

[4] Lewis T, Foundations of Parallel Programming: A Machine-
Independent Approach, IEEE Computer Society Press, 1992

[5] Wróbel M., Nozdrzykowski Ł.: Model for estimating the
execution time of the loop program with limited connection,
Logistyka 4/2014, pp.3425-3435

[6] NAS Parallel Benchmarks,
http://www.nas.nasa.gov/publications/npb.html (access date:
February 2015)

[7] Magdalena Wróbel: Models for estimating the execution time of
software loops in parallel and distributed systems, Theory and
Engineering of Complex Systems and Dependability, Vol. 365,
pp. 533-542

[8]. Z. Pawlak, "Rough Sets", International Journal of Computer and
Information Sciences, Vol.11 1982

[9]. J. Ponce., A. Karahoca, Data Mining and Knowledge Discovery
in Real Life Applications, i-Tech Education and Publishing,
Croatia 2009

[10]. A. Mrózek, L. Płonka, Analiza danych metodą zbiorów
przybliżonych. Akademicka Oficyna Wydawnicza PLJ, Wydanie
1, Warszawa 1999

Authors: dr inż. Łukasz Nozdrzykowski, Maritime University of
Szczecin, Institute of Marine Technologies, ul. Wały Chrobrego 1-2,
70-500 Szczecin, E-mail: l.nozdrzykowski@am.szczecin.pl; mgr
inż. Magdalena Wróbel, Maritime University of Szczecin, Institute of
Marine Technologies, ul. Wały Chrobrego 1-2, 70-500 Szczecin, E-
mail:m.wrobel@am.szczecin.pl;

