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Streszczenie. W artykule przedstawiono modele szacowania czasów wykonywania się pętli programowych w formie zrównoleglonej oraz 
przedstawiono analizę istotności parametrów stosowanych do tego szacowania. Analiza istotności pozwala określić trafność doboru poszczególnych 
parametrów oraz wskazać parametry o niskiej istotności, które można byłoby zredukować. Modele szacowania czasów wykonywania się pętli 
programowych w formie zrównoleglonej 
  

Abstract. Models for estimating  execution times of parallel program loops are discussed. The significance of parameters used for such estimation is 
analyzed. The significance analysis permits to determine the validity of parameters selected for estimation and to identify low significance 
parameters that may be eliminated.      
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Introduction 
The development of information technology systems 

and growing demand for high computing power have drawn 
attention of many specialists to multithreaded systems, 
which employ parallel programming for data processing. 
The parallelization of operations allows their acceleration, 
which is of vital importance for program loops, as these 
often take most of the time. An individual user may take a 
long time to carry out the parallelization of a sequential 
application, particularly where data dependency occurs. 
Another element requiring a lot of time and resources is the 
process of profiling needed for choosing optimal parameters 
of parallelization. Parallelization, however, sometimes fails 
to bring the intended outcome. Hence it is important to 
determine the rate of accelerating the code execution, 
especially parallel program loops. To determine the 
acceleration, we can use models of program loop execution 
time estimation based on their source code and parameters 
characterizing the runtime environment. 

This article analyzes the significance of parameters of 
authors' models for the estimation of execution times of 
program loops in order to prove the correctness of models 
and parameters adopted in these models. The analysis has 
been based on the rough set theory and soft reduction of 
conditional attributes. 
 

Models of program loop execution time 
The parallelization of program loops may be a difficult 

operation due to dependencies occurring inside the loop 
body or/and dependencies between iterations. To execute a 
correct parallel loop, we have to honor dependencies by 
transforming a program loop or by using a program loop 
transformation that honors dependencies [1]. The following 
dependencies are distinguished: flow dependency, where a 
datum is first saved in computer's memory, then it is read 
out; anti-dependency, where a datum is first read out, then 
a new piece of information is added to the datum, and 
output dependency, where a piece of information is added 
to a datum, then a new item of information is again saved 
[2]. There are no dependencies in sequential programs 
because subsequent code lines are executed in a 
sequence. In parallel programs the sequence of executing 
the individual code lines can be changed because various 
fragments are being executed by separate threads [3]. 

Program loops may have dependencies within a loop 
body or there may be dependencies between iterations, or 
the two types of dependencies may co-exist. These 
dependencies may be honored by using the FAN, PAR and 
PIPE transformations [4]. The FAN transformation is used 

when there is no dependency in the program loop or 
dependencies exist inside the loop body, other types of 
dependency are not allowed. The PAR transformation is 
used when there are dependencies between iterations, but 
no dependencies can occur between instructions in a loop 
body. The two types of dependencies are allowed in the 
PIPE transformation. [4,5] 
 

Loop execution time estimation with the FAN, PAR and 
PIPE transformations 

The authors in [5] propose models of program loop 
execution time estimation for FAN and PAR 
transformations. For the PIPE transformation, a conversion 
is proposed to a form compatible with the FAN or PAR  
transformation.  

The time-estimating model conforming with the FAN 
transformation for multithreaded computers is described by 
the formula (1). 
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where: r - time of  single operation execution, w – 
communication time, li – number  of iterations (for nested 
loops all the iterations are summed up), md – amount of 
data required for computations for a thread, z – number of 
operations within a loop, lp – number of pipeline stages in 
the processor, cw – time of threads synchronization, ti – time 
of measurement initiation, k – type of data locality, n – 
number of threads. 
 

 In the model (1) the time of executing a single code 
instruction was measured for various data localities. The 
number of locality measurements is determined by the 
examined program loop. The execution time for a parallel  
program loop is a sum of the product of individual execution 
times for an instruction with a given locality multiplied by the 
number of operations on the variable with that locality,  and 
the number of iterations. This product is divided by the 
number of threads and number of pipeline stages in the 
processor.  The calculated sum is the time of loop execution 
on a preset number of threads. This time value should be 
added to the time of data transmission between the threads 
(w*md*li). The time of transmitting a single datum w has 
been multiplied by the number of data required for the 
threads md and the number of iterations li. Finally, the time 
of synchronization between threads and the time of 
measurement initiation were added. The parameters rk, w, 
cw and ti were measured in the testing environment. For a 
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new testing environment, new measurements of these para-
meters have to be carried out. An example method of me-
asuring the parameters rk, w, cw and ti is shown in Listing 1. 
 

r t1=omp_get_wtime(); 
 for(i=0;i<n;i++){} 
t2=omp_get_wtime(); 
time_for=t2-t1; 
 t3=omp_get_wtime(); 
  for(i=0;i<n;i++){ 
    c1 = a1 + b1; 
t4=omp_get_wtime(); 
r= t4-t3- czas_for 

w #pragma omp parallel sections{ 
 #pragma omp section{ 
    t1=omp_get_wtime(); 
    t3=t1; 
    for(j=0; j<i; j++){ 
     buff[j]='a';} 
     t4=omp_get_wtime();} 
 #pragma omp section { 
   while(buff[i-1]!='a'){} 
    t2=omp_get_wtime();}} 
    t5=omp_get_wtime(); 
   for(j=0; j<i; j++){} 
     t6=omp_get_wtime(); 
      for(j=0; j<i; j++){ 
        buff[j]='0';} 
   time_for=t6-t5; 
   time_zap=t4-t3; 
   time_cal=t2-t1; 
   w= czas_cal - czas_zap - czas_for; 

cw omp_set_num_threads(n); 
 #pragma omp parallel{ 
  if(omp_in_parallel()){ 
   i = omp_get_thread_num();  
   t1[i]=omp_get_wtime();} 
#pragma omp barrier 
   i = omp_get_thread_num(); 
t2[i]=omp_get_wtime();}} 
cw=mean(t2-t1) 

ti t1=omp_get_wtime(); 
t2=omp_get_wtime(); 
t=t2-t1; 

 

Listing 1 – the method of determining individual parameters. 
  

 The parameters comprised in list. 1 should be 
determined each time the program loop execution time is 
being estimated. This is due to the fact that during a 
program loop tested computer's sub-units have variable 
loads. The method of determining the parameter r is 
modified to suit data locality.  
 Another model for program loop execution time 
estimation makes use of the PAR transformation. The 
model has this form (2). 
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 Parameter symbols are identical to those used for the 
FAN transformation model. In the model (2) the maximum 
time, meaning the critical path of that algorithm, is chosen. 
For each path in the algorithm time is estimated similarly to 
the method for the FAN transformation. Of all time 
estimates, the maximum time is chosen.  
 The presented models (1, 2) of program loop execution 
time estimation have been compared to real measurements 
of loop executions from the NAS parallel benchmark [6] 
discussed in [7]. The errors of model-based estimation for 
selected loops are given in table 1. The complete results of 
model-based estimation are given in articles [5,7]. 
The results presented in table 1 show that the average error 
of the models (1, 2) amounts to 16.425%. The maximum 

estimation error was 36.63%, while the lowest value of 
estimation error equaled 0.5%. Table 2 presents the 
matching of the models to real loop measurements. 
 
Table 1. Errors of estimating by the models (1, 2) 

 Models (1), (2) 
Threads num. 

Loop name 
2 4 6 8 

MG_mg_f2p_1 11.75 20.28 23.48 13.58 
CG_cg,f2p_6 2D 16.46 4.60 15.50 23.58 
MG_mg_f2p_4 2D 12.85 9.59 0.50 1.53 
CG_cg,f2p_6 17.85 2.36 29.28 22.08 
Seidel 1.96 23.67 24.29 28.20 
MG_mg.f2p_4 36.63 35.74 10.57 7.88 

Average 16.25 16.04 17.27 16.14 
 

Table 2. Linear correlation of the models (1,2) with the real results 

Loop name Pearson Linear Correlation 
MG_mg_f2p_1 0.974175565 
CG_cg,f2p_6 2D 0.792099983 

MG_mg_f2p_4 2D 0.961035177 
CG_cg,f2p_6 0.890530692 
Seidel 0.991540911 
MG_mg.f2p_4 0.864850576 

 

 Pearson linear correlation presented in table 2 is strong 
and positive, which proves that the models fit well to real 
times of program loop execution. The average correlation 
for the models was 0.91, with the lowest value 0.79, while 
the greatest correlation amounted to 0.99. 
 
Analysis of parameter significance  
 To analyze the significance of individual parameters 
which allow estimation of program loop execution time, we 
have used soft reduction of conditional attributes based on 
the relative probability of useful rules in the rough set theory 
[8, 9]. The analysis was based on real measurements 
performed in the testing environment of program loop 
execution times. All parameters required in the models  
estimating the time were determined for that environment. 
 The use of soft reduction of conditional attributes will 
allow rejecting those attributes whose removal will not lead 
to a decreased number of rules generating completely 
certain rules [10]. The method permits to evaluate the 
quality of rules based on relative probability of the atomic 
rules. The probability is expressed by this formula: 
 

(3)                                      
L

P
Pw   

 

where: P - sum of the probabilities of useful atomic rules, L 
– number of elementary conditional sets. 
 

 An atomic rule, generated for a single elementary set, is 
said to be useful when its probability is higher than a preset 
tested threshold, above which the rule can be considered 
as useful. By specifying decision and conditional attributes 
and coding them properly, we make an analysis by the 
reduction of individual conditional attributes and the 
determination of their significance in generating certain 
rules. If we use the soft reduction of conditional attributes, 
the reduction will result in a slight drop of the number of 
items generating completely certain rules.  
 The performed significance analysis was based on 
32,133 measurement results of the execution time of all 
program loops from the NAS benchmark [X]. The NAS 
benchmark includes programs characteristic of irregular 
access to memory, enhanced communication, or the use of 
multi-dimensional tables.  
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Time Time measurements were done for various loads 
on an eight-threaded processor Intel Core i7-2600 with 8GB 
DDR3 RAM. The rules analyzed were those with relative 
probability above 80 %. Additionally, an analysis was made 
for the probability greater than 90 %. 
 In the significance analysis of parameters used for 
estimation of program loop execution times, conditional 
attributes are parameters of models (1,2). The decision 
attribute is the time of program loop execution. Attribute 
coding was done by the method of equal number of 
samples on the intervals, dividing each of them into 5 
intervals. Attribute coding for the runtime environment was 
done as shown in table 3. 
 

Table 3. Attribute coding. 
Attribute  Intervals accepted for coding 
Execution time (0, 0.026, (0.026, 0.073, 0.073, 

0.116,(0.073, 0.116, (0.116, ∞) 
r (0, 6.9e-10, (6.9e-10, 7.1e-10, (7.1e-

10, 7.3e-10, (7.3e-10, 7.6e-10, (7.6e-
10, ∞) 

w (0, 1.8e-8, (1.8e-8, 2.1e-8, (2.1e-8, 
2.4e-8, (2.4e-8, 2.75e-8, (2.75e-8, ∞) 

lw (1, 3, (3,4, (4,5, (5,7, (7,8 
li (0,7500000,  

(7500000,25000000, 
(25000000, 50000000, 
(50000000, 80000000, 
(80000000, ∞) 

md (0, 2, (2,3, (3,4, (4,5, (5, ∞) 
z (0, 6, (6,8, (8,9, (9,19, (19, ∞) 
 

 We have determined the number of elementary sets of 
atomic useful rules and the relative probability of all atomic 
useful rules for an unreduced set of conditional attributes. 
The analysis results are presented in table 4. 
 
Table 4 – The analysis results for an unreduced set of conditional 
attributes 
Probability Pw 0.8 0.9 
Number of elementary 
sets  

3941 3941 

Number of atomic 
useful rules 

2819 2615 

Relative probability of 
all atomic useful rules 

0.703 0.661 

 

As a result of the analysis performed using the rough 
sets theory and soft reduction of conditional attributes, we 
have obtained significance levels of individual conditional 
attributes, presented in tables 5 and 6, for two levels of 
probability: 0.8 and 0.9. 
 
Table 5. Analysis of conditional attribute significance at Pw = 0.8. 
Condi-
tional 
attribute 

Number of 
elementary 
reduced 
sets  

Number 
of 
atomic 
useful 
reduced 
rules  

Relative 
probability of 
all atomic 
useful 
reduced 
rules 

Attribute 
significance 

r 960 623 0.63 0.11 
w 961 609 0.62 0.12 
lw 943 613 0.63 0.10 
li 1460 683 0.45 0.36 
md 2539 1362 0.52 0.26 
z 2189 1303 0.58 0.17 
 

It follows from the analysis results that the most 
significant attribute is the number of iterations li, whose 
significance for Pw = 0.9 amounts to 43 percent. Other 
parameters of large significance are the amount of data 
required for computations by a thread md (32%) and 
number of operations within a loop z (18%). The least 

significant are the time parameters r and w, the time of a 
single operation, and data transmission, respectively. 
Nevertheless, at the significance level of 15 % for Pw=0.9 
these attributes should not be reduced. The results show 
that the parameters used in the time execution estimation 
models have a high significance and should not be reduced. 
 

Table 6. Analysis of conditional attribute significance at Pw = 0.9. 
Condi-
tional 
attribute 

Number 
of 
elementa
ry 
reduced 
sets  

Number of 
atomic 
useful 
reduced 
rules  

Relative 
probability of all 
atomic useful 
reduced rules 

Attribu
te 
signific
ance 

r 960 540 0.56 0.15 
w 961 549 0.57 0.14 
lw 943 527 0.55 0.16 
li 1460 547 0.37 0.44 
md 2539 1145 0.45 0.32 
z 2189 1184 0.54 0.18 
 

Summary 
 In this article, presenting models of program loop 
execution time estimation based on the source code of the 
loop and parameters characterizing the program 
environment, we have proved that the selected parameters 
for the models are correct. The significance analysis of 
individual parameters was based on the rough set theory 
and aimed at identifying parameters that might be 
eliminated from the models. From the analysis results we 
conclude that the examined attributes are very useful and 
should not be reduced. Their selection and high 
effectiveness in program loop execution time estimation, as 
herein proved by these authors, confirm that the proposed 
models are designed correctly. 
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