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Abstract. In the paper the equations of a circuit mathematical model of an induction motor are presented. The variable magnetization inductance 
and variable moment of inertia of rotating elements connected to the rotor are included in the model in order to improve its adequacy. A dynamical 
torque, being the component of an equation of rotor motion, is determined. The rightness of the trend, consisting in taking into account variable 
parameters of mathematical models of electrical machines, in order to increase the accuracy of the achieved results, is also shown.  
 
Streszczenie. W pracy przedstawiono równania obwodowego modelu matematycznego silnika indukcyjnego z uwzględnieniem zmiennej indukcyjności 
magnesowania oraz zmiennego momentu bezwładności elementów wirujących dołączonych do wirnika w celu uściślenia ww. modelu. Określono 
moment dynamiczny występujący w równaniu ruchu wirnika oraz wykazano słuszność kierunku, polegającego na uzmiennianiu parametrów modeli 
matematycznych maszyn elektrycznych w celu zwiększenia dokładności otrzymywanych wyników. (Modelowanie matematyczne silnika 
indukcyjnego z nasyconym obwodem magnetycznym przy zmianach momentu bezwładności). 
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Introduction 
 An analysis of static and dynamic phenomena during an 
operation of an electrical motor is necessary at a stage of 
designing efforts as well as during usage of drive systems. 
Mathematical models of the tested motors should be 
developed in order to carry out this analysis [1]. Depending 
on requirements, the circuit models, field models or field-
circuit models are applied for mathematical description of 
motors and expanded electromechanical systems, as well. 
The circuit models (models based on lumped parameters) 
are the basis for mathematical description of drive systems, 
including automated drive systems with converter-fed 
motors, used in numerous technological processes. The 
circuit models of drive systems, that contain motor, 
converter and control system, are commonly used despite 
the intensive development of the field models of electrical 
machines and methods of their simulation [2]. 
 In the case of circuit modelling, the problem is to solve 
two fundamental tasks [1]: (1) formulating a system of 
differential equations, (2) determining values of coefficients 
(parameters) of the abovementioned equations. A well 
carried out estimation of model parameters of the chosen 
structure is the key to its diagnosis and simulation [3]. If the 
model and estimation methods were properly selected for 
the given structure, then this solution may be copied, 
providing satisfactory results of simulation and diagnosis of 
the considered structure [3]. 

Induction motors are used in majority drive systems. 
The equations based on space vectors are commonly used 
in order to describe mathematically induction motors. The 
system of these equations is the vector mathematical model 
of induction motor. The abovementioned model is obtained 
as a result of application of space vector definition to 
equations of balanced voltages across stator and rotor 
circuits of three-phase induction motor [2]. As a consequence 
of this transformation, the voltage equations are obtained, 
that contain vector variables, represented on complex plane. 
The vector variables may also be represented in Cartesian 
coordinates if the vector equations transformed to matrix 
equations containing components of the vector variables. 

The type and performance of windings and parameters 
of magnetic circuit determine the electromechanical properties 
of induction motors. Magnetic circuits of electrical machines 
are made of ferromagnetic materials, that have nonlinear 
properties, including saturation phenomenon and hysteresis 
phenomenon. Magnetization curves i.e. dependencies 

between magnetic induction and magnetic field intensity 
B(H) should be known in order to conclude whether the 
given material has linear or nonlinear properties. The core 
assembly and stator windings determine magnetic flux, that 
determines starting torque and pull-out torque of induction 
motor.  
 

Mathematical model of induction motor 
 Induction machine, consisting of stator winding and rotor 
winding, is the system of six circuits magnetically coupled: 
three immovable circuits of stator and three circuits of rotor 
(factual or equivalent one for squirrel-cage motor). 
 The following assumptions are usually adopted in order 
to simplify the mathematical model of induction machine [2,4]: 
1. Phase windings of machine are balanced. 
2. The influence of winding capacity are omitted. 
3. Lumped windings of machine are taken into account. 
4. The regularity of air-gap is assumed. 
5. Harmonics of spatial distribution of magnetic field in air-
gap are omitted. 
6. The influence of anisotropy is omitted. 
7. Hysteresis loss, eddy-current loss and anomalous loss 
are omitted. 
8. Magnetic circuits are linear and the equivalent inductances 
are independent of currents. 
Taking into account the subject matter of the paper, the 
assumption no. 8 shall not be respected in the further 
considerations. 

The equations (1) and (2) of electromagnetic transient 
processes, occurring in magnetically coupled circuits of 
balanced two-pole induction machine, contain space 
vectors of fluxes, currents and voltages, and they are 
referenced to the rotating coordinate system d-q connected 
with the space vector of main flux m = m + j0 (flux in main 
magnetic circuit). These equations are given as follows:  
 

(1)   
s

s
sss dt

d
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where: us, ur, is, ir, s, r are space vectors of voltages, 
currents and fluxes of stator and rotor, m is angular velocity 
of rotor, j is imaginary unit. The quantity  in equations (1) 
and (2) is determined as  = d /dt, where ,  are angular 
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velocity and angle of rotation of main flux space vector m. 
In the case of squirrel-cage induction motor the following 
relationship should be taken into account: ur = 0 + j0. The 
dependencies between space vectors of both, fluxes and 
currents, should be included in order to solve the equations 
(1) and (2). They may be expressed as follows: 
 

(3)  
msss

iL     , 
mrrr

iL     

 

where: Ls, Lr are leakage inductances of stator winding 
and rotor winding. The equation of current balance, 
according to adopted assumptions, is given below: 
 

(4)  mrs iii   
 

where: im is space vector of magnetizing current, whereas 
the dependency between flux and magnetizing current: 
 

(5)  mmm
iL  

 

where: Lm is magnetization inductance of main magnetic 
circuit. In the case of linear magnetic circuits, the quantity 
Lm is constant parameter. For nonlinear magnetic circuits, 
Lm may be expressed as a function of magnetizing current 
or flux. For purposes of mathematical modelling of induction 
motors the dependency between Lm and main flux: Lm(m) 
seems to be more useful. 
 The equation of torque balance should be added in 
order to solve the system of equations (1) – (5): 
 

(6)  doe mmm   
 

where: me, mo, md are electromagnetic torque of a motor, 
load torque applied to motor shaft and dynamical torque, 
respectively, while losses (frictions, clearances), that occur 
during transmission of power between motor and 
mechanism, are usually included in values of me or mo. 
Electromagnetic torque is the result of magnetic fields 
interaction in electrical machine: 
 

(7)   sse im *Im  

 

Approximation of magnetization curve of induction 
motor core 

A nonlinear curve I0 = f(U) of non-loaded induction motor 
results from nonlinear magnetization curve of main 
magnetic circuit, where U, I0 are feeding voltage and current 
of non-loaded motor. In author’s publications, i.a. [4], the 
approximation of nonlinear magnetization inductance Lm of 
induction motor, using dependency describing the attenuation 
diagram of the Butterworth’s low-pass filter, was proposed. 
In this dependency the relative voltage replaced frequency 
as argument. The no-load curve of motor was obtained as a 
result of transformation. Introducing some modifications into 
Butterworth’s polynomial the expected gradient of the linear 
segment of the motor no-load curve can be achieved. The 
abovementioned segment corresponds to unsaturated 
magnetic circuit. The proposed dependency is given below: 
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where: Un, In are rated voltage and rated current of motor, a, 
b, q are parameters determined experimentally or on the 
basis of the characteristic of motor prototype. The exemplary 
no-load curve of induction motor, drawn on the basis of the 
dependency (8), and points being the result of measure-
ments [4] are shown in Fig. 1. According to Fig. 1, the 

dependency (8) allows reproducing precisely the no-load curve 
of induction motor, even if the magnetizing current exceeds 
the rated magnetizing current (Imn  I0n < In) several times. 
 

 
 
Fig. 1. No-load curve of induction motor [4] 
 
Adopting the following assumptions: U/Un  m/mn and I0  
Im, the dependency (8) may be replaced by the dependency 
(9), that allows for approximation of magnetizing current as 
the function of main flux m: 
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or for instantaneous values: 
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where: mn is rated flux in main magnetic circuit. 
 Variable parameters of circuit mathematical models of 
electrical motors are controversial for some scientists due to 
the fact that the variable parameters are inconsistent with 
the assumptions concerning the method of formulating 
mathematical model based on Lagrange’s formalism. 
According to this formalism the parameters of the modelled 
system should be constant. This controversy was mentioned 
in the former paper of the author [5]. 
 

Determination of dynamical torque. Electromagnetic and 
mechanical analogies 
 In teaching studies the equation of motion together with 
formula for calculation of dynamical torque are derived on 
the basis of energy conservation low: 
 

(11) kue www   
 

where: we is motor energy transmitted to mechanical system, 
wu is energy output, wk is kinetic energy stored in rotating 
masses. The kinetic energy is expressed as: 
 

(12) 2
2
1 Jwk   

where moment of inertia J generally is a function of angle of 
rotation  or angular velocity . The equations of power 
balance is obtained as a result of differentiation of equation 
(11) taking into account (12): 
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hence, dividing (13) by  and taking into account  = d/dt, 
the equation of rotor motion is derived: 
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 The formula for calculation of dynamical torque, resulting 
from the above considerations, may be given as follows: 
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 In classical mechanics, a force of inertia is defined as 
time derivative of momentum, according to the following 
formula (ignoring vector properties of force and velocity): 
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The dynamical torque in rotary motion may be defined in a 
similar way: 
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The first components on the right sides of the equations 
(14) and (17) are the same, whereas the second 
components in both equations differ in factor ½. Thus, the 
following question may be asked: which equation – (14) or 
(17) – determines correctly the dynamical torque for a 
mechanical system containing rotating elements with 
variable J = f1()? 
 In the well-known publication of White and Woodson 
“Electromechanical energy conversion” flux linkages are 
classified as generalized momentums, whereas voltages – 
as generalized forces. The following dependencies may be 
defined by analogy to (16) for flux linkages of self-induction 
or mutual induction, respectively: 
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Self-inductances L and mutual inductances M may be 
constant or dependent on magnetizing current (or flux) – in 
the case of saturated magnetic circuits. They may also be 
functions of angle of rotation  or displacement x – in the 
case of electromechanical transducers. 
 Limiting the considerations to self-inductances, the 
following equation may be written for saturated magnetic 
circuit (e.g. magnetic circuit of choke coil): 
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On the other hand, for the case L = f2(x), the following 
equation may be written: 
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The term within square brackets on the right side of the 
equation (19) is a dynamical inductance of winding and 
derivation of its is known from literature sources. 
 Adopting analogical to (15) formula for calculation of 
inductive voltage (e.g. in winding of electromagnet) and 
including analogical to (12) formula for calculation of energy 
stored in magnetic field, it may be written for L = f2(x): 
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 Using the variational calculus method, the inductive 
voltage of a coil may be determined on the basis of 
Lagrange’s function of the first kind and Euler-Lagrange’s 
condition in the following way: 
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whereas for the dynamical torque: 
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The abovegiven results are in accordance with (20) and 
(17), respectively, i.e. they are contrary to (21) and (14). In 
connection with the above, it may be concluded that the 
formula (17) allows determining properly the dynamical 
torque in a mechanical system containing rotating elements 
with variable J being a function of angle of rotation . 
 In the previously mentioned publication of White and 
Woodson the term of magnetic co-energy was defined as: 
 

(24)   
 nii n

k kkm iw
,...,

0,...,0 1

1
d  

 

and for the single winding: 
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The kinetic co-energy for a mechanical system may be 
defined in a similar way: 
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 Taking into account the second dependency of (26), the 
moment of inertia can be determined correctly by using the 
formula (15):  
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In the cases, where mass or moment of inertia are constant, 
the known formulas are in common use: 
 

(28) const            2
2
1  mmvww kk  

(29) const            2
2
1  JJww kk   

 

 It should be noted, that the relation m = f3(v) is useful 
only in theory of relativity and does not have application in 
analysis of electrical machines. On the other hand, the 
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analogous relation for rotary motion J = g3() is useful not 
only in relativistic aspect. A classical example, however one of 
many, is Watt’s centrifugal governor. A mechanism used in 
clocks in order to stabilize rotational speed may also be 
mentioned among examples (Fig. 2).  
 

 
 
Fig. 2. Mechanism used in clocks in order to stabilize rotational 
speed – the example of variable moment of inertia J, dependent on 
angular velocity  
 

The examples of J = f1() and m = g1(x) are also known. 
They are connected e.g. with increasing a rotating mass of 
reel or mixer in chemical reactor, caused by reeling the line 
or sticking a mixed substance to the mixer [4], respectively. 
 The considered formulas for calculation of the dynamical 
torque can be negligible if the system of equations (1) – (5) 
will be expanded upon the following equation of motion of 
rotor and rotating elements with variable J connected to rotor: 
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In order to calculate the rotor angular velocity, the 
difference in torques on the right side of the equation (30) 
should be integrated and then the integration result should 
be divided by J, i.e.: 
 

(31) 













  )0(d)(

1

0

btmm
J

t

oe  

 

where: b(0) is initial angular momentum determined as 
product of initial values of moment of inertia J(0) and angular 
velocity (0). If a value of J is constant, i.e. independent of 
angular velocity and rotor position, the angular velocity may 
be determined on the basis of the equation (32): 
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 On the basis of the above considerations it may be 
concluded, that questioning the variability of magnetization 
inductance in the dependencies such as i = L–1() or  = 
L(i)i is equivalent to questioning the variability of mass or 
moment of inertia in the dependencies p = m(v)v or b = 
J(), e.g. p = mv[1 – (v/c)2]–½. The problem with variable 
parameters concerns the Lagrange’s formalism based on 

dependencies such as (33), that range of application is 
limited to linear systems (coefficients A, B should be 
independent of generalized coordinates x and derivatives of 
theirs). 
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Conclusions 
In the paper the equations of circuit mathematical model 

of induction motor are presented. The variable magnetization 
inductance and variable moment of inertia of rotating 
elements connected to rotor is taken into account in order to 
improve the adequacy of the model. The dependency, that 
allows approximating precisely a nonlinear magnetization 
curve of ferromagnetic-based cores of electrical machines, 
is mentioned. On the basis of the selected electromagnetic 
and mechanical analogies, the rightness of the trend, 
consisting in taking into account the variable parameters of 
mathematical models of electrical machines in order to 
increase the accuracy of the achieved results, is shown. 
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