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Abstract. The paper presents fundamentals of design of reactive compensators for total compensation of the reactive and unbalanced currents of 
linear time invariant (LTI) loads supplied with asymmetrical sinusoidal voltage in three-wire systems. Theoretical fundamentals for the presented 
method are provided by the Currents’ Physical Components (CPC) based power theory. Development of the reactive compensator equation is the 
very core of the method presented. A draft of the CPC-based power theory of LTI loads in three-wire systems with asymmetrical, but sinusoidal 
supply voltage is also presented in the paper.   
 
Streszczenie. Artykuł przedstawia podstawy projektowania kompensatorów reaktancyjnych prądu biernego i niezrównoważenia liniowych i czasowo 
niezmienniczych (LTI) odbiorników trójfazowych zasilanych sinusoidalnym, lecz niesymetrycznym napięciem. Teoretyczne podstawy kompensacji 
oparte są na Teorii Mocy Składowych Fizycznych Prądów (ang.: Currents’ Physical Components (CPC) – based Power Theory). Głównym 
elementem przedstawionej metody jest równanie kompensatora reaktancyjnego. Artykuł przedstawia także zarys teorii mocy liniowych czasowo 
niezmienniczych odbiorników trójfazowych zasilanych niesymetrycznym napięciem sinusoidalnym. (Kompensacja reaktancyjna w trój-
przewodowych układach trójfazowych z niesymetrycznym napięciem zasilania) 
 
Keywords: Power theory, unbalanced loads, Currents’ Physical Components, CPC, power factor 
Słowa kluczowe: Teoria mocy, odbiorniki niezrównoważone, Składowe Fizyczne Prądu, współczynnik mocy 
 
 
Introduction 

The reactive power and three-phase loads imbalance 
cause degradation of the power factor and an increase in 
the cost of the electric energy delivery. Therefore, as early 
as in 1917 there was the first reported attempt [1] of the 
load balancing and compensation of the reactive power. 
The first reactive compensator developed by Steinmetz in 
[1] is known [6, 7] as the Steinmetz’s compensator.  

 The development of power electronics has provi-
ded new tools for reactive power compensation along with 
load balancing and reduction of harmonic distortion, in the 
form of switching compensator, commonly known under a 
bit misleading name “a harmonic power filter”. Although the 
power rating of switching compensator has increased subst-
antially with the increase of the switching power of semicon-
ductor switches, only the reactive compensator can meet 
the power expectations at certain high power applications. 
These are, for example, high power AC arc furnaces or AC 
to DC conversion facilities for DC voltage transmission. 
Moreover, independently of practical needs, the power 
theory should be able to provide fundamentals not only for 
switching compensator design and control, but also provide 
fundamentals for reactive compensators design.  

 The development of methods of reactive compen- 
sators design for three-phase systems focused a consi- 
derable attention [2-7], including compensators for systems 
with nonsinusoidal voltages and currents [3]. The method of 
a reactive balancing compensator design for systems with 
nonsinusoidal voltages and currents was eventually solved 
in [9], on the condition that the supply voltage is symme- 
trical, however. The power theory at that time was not deve-
loped sufficiently to describe power properties of sys-terms 
with asymmetrical supply voltage, even if the voltage was 
sinusoidal. This main obstacle was overcome in [10]. A draft 
of the CPC-based power theory of LTI loads supplied over a 
three-wire line with asymmetrical sinusoidal voltage is pres-
ented in the following section. Details of that theory can be 
found in [10].  

 
CPC of LTI loads at asymmetrical supply voltage  

Three-phase three-wire systems considered in this 
paper have a structure shown in Fig. 1 and the reactive 
compensator is to be installed at the primary side of the 
transformer, where voltages uR(t), uS(t), uT(t) and currents 

iR(t), iS(t) and iT(t) can be observed and measured. The 
voltages are referenced to an artificial zero, so that these 
voltages cannot contain symmetrical component of the zero 
sequence.  
 
 
 
 
 
 

  
Fig. 1. Static load supplied from a three-wire line 
 
These voltages and currents can be arranged into three-
phase voltage and current vectors u(t) and i(t), 

   T T
df df

R S T R S T, , ,         , ,u u u i i i u i . 

The apparent power in balanced three-phase systems 
with sinusoidal voltages and current is equal to the magni- 
tude of the complex apparent power S, which is commonly 
defined as 

(1)                              j= S e P jQ.S      

When the load is unbalanced and/or voltages are 
asymmetrical then the apparent power S is no longer the 
magnitude of the complex apparent power S. Unfortunately, 
similarity of symbols for both powers may cause confusion 
and may even lead to errors. Since it is a very common 
custom of denoting the apparent power by S, a clearly 
different symbol is used in this paper for the power calcu- 
lated as 

(2)                           
df

T * jP j Q = C eC   U I   

where, 

           T
df

R S T ,U U UU            T
df

R S T .I I II   

are three-phase vectors of complex rms (crms) values of 
line-to-artificial zero voltages and line current. Also the 
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adjective “apparent” will not be used. The power denoted as 
C will be referred to as the complex power. 
 With respect to active and reactive powers P and Q at 
the supply voltage u, the unbalanced load shown in Fig. 1 is 
equivalent to a balanced load shown in Fig. 2 on the condi- 
tion that its phase admittance is equal to 

(3)                    
df df

b b b 2 2|| || || ||

*P jQ
G jB

C
Y


   

u u
. 

 
 
 
  
  
                  
 
Fig.2. Balanced load equivalent to original load with respect to the 
active and reactive powers P and Q. 
 
Indeed, the complex power of such a balanced load is 

(4)     T * T * 2
b b b b( ) || ||*= P j Q .C Y Y C    uU I U U  

 Since Yb is the admittance of a balanced load which is 
equivalent to the original load with respect to the active and 
reactive powers, it will be referred to as the equivalent 
balanced admittance. The equivalent balanced load draws 
the current 

(5)            b a r b b2 Re{ e } 2 Re{ e }j t j tY    i i i I U . 

It is composed of the active current 

(6)              
df

p p n n
ba b2 Re{ ( ) }j tG G eU + U  i u  1 1   

where Up and Un denotes the crms value of the load voltage 
symmetrical components of the positive and the negative 
sequence. Symbol 1p denotes a symmetrical unit vector of 
the positive sequence, while 1n denotes a symmetrical unit 
vector of the negative sequence, defined as 

(7)       
df df

2 3 2 3

2 3 2 3

p n

1 11 1

1 ,     1

1 1

j / j /

j / j /

* e e

*e e

 

 

 
 





      
               
            

1 1   

 and shown in Fig. 3.  

 
 
 
 
 
 
 
 
Fig. 3. Three-phase symmetrical unit vectors 1p and 1n. 

 
The current of the equivalent balanced load, defined by (5) 
contains also the reactive current 

(8)     
df

p p n n
r b b( + /4) = 2 Re{ ( ) }j tB t T jB eU + U i u  1 1 . 

The remaining current of the load, after the current of the 
balanced load is subtracted, is caused by the load imba-
lance. It is equal to 

(9)      b b u u 2 Re{( )e } 2 Re{ e }.j t j t     i i iI I I  

Consequently, the load current is decomposed into the 
active, reactive and unbalanced currents such that 

(10)                              a r u.  i i i i     

 As it was proven in [10] the active, reactive and unbal-
anced currents are mutually orthogonal and consequently, 
their three-phase rms values satisfy the relationship 

(11)                      2 2 2 2
a r u|| || || || || || || ||  i i i i    

with, 

(12)                  a b r b|| || || ||,          || || | || ||G |B i u i u    

 Owing to the mutual orthogonality of the current compo-
nents, the three-phase rms value of the unbalanced current 
can be expressed as 

(13)                     2 2 2
u a r|| || || || || || || ||  i i i i     

 To make the decomposition (10) useful for reactive com-
pensator design, we have to know how the reactive and 
unbalanced currents ir(t) and iu(t) depend on the circuit 
parameters.  
 At symmetrical voltage the active and reactive currents 
are expressed in terms of equivalent admittance of the load, 
Ye, defined in [9] as 

(14)                     
df

ST TR RSe e e + +G + jBY Y Y Y    

while at asymmetrical voltage these two currents are 
expressed in terms of the equivalent balanced admittance 
Yb, 

(15)        
2 2 2

RS RS ST ST TR TR
2 2b b b || || || ||

* U U U
G jB

Y Y YC
Y

 
   

u u
  

 When the supply voltage is asymmetrical and this 
asymmetry is specified by a complex coefficient of the 
supply voltage asymmetry, defined as 

(16)               
n n n df

( )
p p p

 = 
j

j j
j

U e U
e ae

U e U

U

U
a


  


      

then, as shown in [10], the equivalent and balanced 
admittances differ mutually by admittance Yd, namely 

(17)                       
df

ed b =  Y Y Y  

and this difference is equal to 

(18)     ST TR RS2
2 2

d 3 3
2= [ cos cos( ) cos( )]

1
a
a

Y Y Y Y      


. 

Admittance Yd depends not only on the load line-to-line 
admittances, but also on the supply voltage asymmetry. 
When the load is balanced, i.e.,  

    RS TR RS e d3 then  0/ , Y Y Y Y Y      

independently of the supply voltage asymmetry. When the 
supply voltage is symmetrical and consequently, asymmetry 
coefficient a = 0, then Yd = 0, independently of the load 
imbalance. Therefore, admittance Yd is referred to as an 
asymmetry dependent unbalanced admittance in this 
paper. Admittance Yd can have a non-zero value only if, 
simultaneously, the load is unbalanced and the supply 
voltage is asymmetrical. 
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 The vector of crms values of unbalanced currents Iu in 
the load supply lines can be decomposed, as shown in [10], 
as follows 

(19)              n pp p n n
u d = Y A U A U I U 1 1   

where, 

(20)              
df

p
ST TR RS = ( + )*A Y Y Y        

(21)    
df

n
ST TR RS =  ( + )*A Y Y Y    

are unbalanced admittances for the positive and the nega-
tive sequence voltages respectively.  
 Thus, the vectors of the active, reactive and unbalanced 
currents, ia, ir and iu can be specified in terms of four admit-
ances, Yb, Yd, A

p and An, which can be explicitly expressed 
in terms of line-to-line admittances YRS, YST, and YTR, line-
to-line supply voltage rms values URS, UST, and UTR and the 
coefficient of the voltage asymmetry, a. 
 
Reactive compensator design  
 Power systems composed of aggregates of single-
phase loads, as shown in Fig. 1, can often be balanced, by 
reconfiguration of the supply of the aggregates of single-
phase loads, while sometimes; compensators are needed 
for that. The load balancing is associated in such a case 
with compensation of the reactive power. 
 Compensators can be built as PWM inverter-based 
switching compensators (known as “active power filters”) or 
as reactive compensators. Fundamentals of switching com-
pensator control using the Instantaneous Reactive Power 
(IRP) p-q Theory were developed mainly by Akagi and 
Nabae in [11] and in numerous other papers. Such compen-
sation based on IRP p-q Theory can fail, however, when the 
supply voltage is asymmetrical, as it was shown in [12].  
 Similarly as in LTI systems with symmetrical and sinu-
soidal supply voltage, the reactive and unbalanced currents, 
ir and iu, cause decline of the power factor λ at the supply 
terminals. These currents can be reduced by a shunt 
reactive compensator. It can have ∆ configuration as shown 
in Fig. 4. Let us assume that it is built of lossless reactive 
elements of susceptances TRS, TST and TTR. The compen-
sated load is specified in terms of four admittances Yb, Yd, 
Ap and An. These admittances of the compensator have 
additional index C. 

 
 
 
 
 
 
 
 
 
 
Fig. 4. Three-phase LTI load with reactive compensator 

 The vector of crms values of the reactive current iCr of 
such a compensator is 

         Cr CbjBI U    

where its balanced susceptance is 

(22)                 
2 2 2

RS RS ST ST TR TR
C 2b || ||

T U T U T U
B

 


u
   

Unbalanced admittances of such a compensator are 

(23)           C ST TR RS
p = ( + )*j T T TA         

(24)            C ST TR RS
n = ( + )*j T T TA         

while the asymmetry dependent unbalanced admittance is 

(25)  ST TR RS2
2 2

Cd 3 3

2= [ cos cos( ) cos( )]
1

aj T T T
a

Y       


.  

 The compensator reduces the reactive current to zero at 
the condition that 

(26)             Cb b 0B B   

and it reduces the unbalanced current to zero on the 
condition that the sum of the unbalanced current of the 
load, specified by (19), and the compensator are equal to 
zero. i.e.,  

(27)      pn p n
CC

p p n n
Cd d( ) ( ) ( )Y Y A A U A A U     U 1 1 0 . 

 Coefficients at the voltage in this equation are identical 
for each line. Therefore, the unbalanced current is reduced 
to zero on the condition that for a single line, in particular, 
for line R 

(28)        p p p n n n
R CCCd d( )  ( ) ( ) = 0Y Y U A A U A A U     .  

Since the condition (28) has to be satisfied both for the real 
and for the imaginary part of the equation, it provides two 
equations, namely, 

(29)    p p p n n n
R CCCd dRe{( ) ( ) ( ) }= 0Y Y U A A U A A U           

(30)    p p p n n n
R CCCd dIm{( ) ( ) ( ) }= 0Y Y U A A U A A U          

Therefore, along with equation (26), there are three 
independent linear equations for calculating three suscepta-
nces TRS, TST and TTR of the compensator. It means that 
this problem has to have a solution. Thus, the supply 
current of any unbalanced LTI load supplied with a sinu-
soidal asymmetrical voltage can be reduced to its active 
component, and the power factor can be improved to unity. 
 Equations (26) (29) and (30), can be rearranged (see 
Appendix) into the following compensator equation  

(31)        

2 2 2 2
RS ST TR RS

1 2 3 ST 4

1 2 3 TR 4

b ||

Re Re Re Re

Im Im Im Im

||U U U T B

T   

T  

F F F F

F F F F

    
          
         

u

    

with complex coefficients F1, F2, F3 and F4 specified in the 
Appendix. 
 
Numerical illustration. Let us calculate parameters of the 
compensator for the unbalanced load shown in Fig. 5, assu-
ming that it is supplied with strongly asymmetrical voltage. 

 
 
 
 
 
 
 
 
Fig. 5. Example of a circuit with very high load imbalance and very 
high supply voltage asymmetry. 

 
 The complex rms values of the positive and negative 
sequence symmetrical components in the system analyzed 
are equal to 
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0

0

p
120

n 60

100
66 661, ,1 100 V.

3 1, , 33 330

j
j

.*
e

* . e

U

U

 
 



 
                         
   

The three-phase rms values of the supply voltage symme-
trical components are 

p p|| || 3 3 66 66 115 47 VU . .   u
 

       
n n|| || 3 3 33 33 57 73 VU . .   u

 

and consequently, three-phase rms value of the supply 
voltage is 

p 2 n 2 2 2|| || || || || || 115 47 57 73 129 1V.. . .    u u u
 

 Since the active and reactive powers are equal to, 
respectively, P = 10kW and Q = 10kvar, the equivalent 
balanced admittance Yb of the load in the circuit shown in 
Fig. 5 is equal to  

b b b 2
0 600 0 600 S

|| ||

P jQ
G jB . j .Y


    

u . 
 The complex coefficient of the supply voltage asym-
metry is equal to  

0

0
n 60

60
p

33.33
 = 0.50

66.66

j
j je

ae e .
U

a
U

   
 

The crms values of the supply voltage measured with res-
pect to the artificial zero are  

  
0p n 19.1

R  + = 88.18 VjeU U U
  

  
0p n 139.1

S  + = 88.18 V* jeU U U  
  

  
0p n 120.0

T  + = 33.33 V* jeU U U 
 

while the crms values of line-to-line voltages are equal to 

  
30

RS R S 173.21 Vj  eU U U   
 

  
90

ST S T 1 0 V0 j eU U U    
 

  
180

TR T R 1 0 V0 j  eU U U   
. 

The load unbalanced admittances are equal to 

  
0165

ST TR RS
p = ( + ) = [1+ ( 1)] = 1.932 S* jj eA Y Y Y      

 

   
0105

ST TR RS
n = ( + ) = [1+ ( 1)] = 0.518 S* * jj eA Y Y Y      

. 

    
0

ST TR RS2

0 0 0 45
2

2 2

3 3

2
= [ cos cos( ) cos( )] d 1

2 0 5
    = [cos(60 ) cos(60 120 )] 0.566 S.

1 0 5
j

a

a

.
j e

.

Y Y Y Y
   



   



  


 

With these values of the load admittances, the coefficients: 

   

0

1 2 2

2 cos 2 0 6 cos60
0.4

1 1 0.5

a .  
j  j  j

a
c

 
  

 

   
2 2

2 cos( 120 )
0.4

1

 a 
j j

a
c

  
 

  

   
3 2

2 cos( 240 )
0.8

1

 a  
 j  j

a
c

  
 

 . 

Hence 

1 3(1 () ) = 0.52j * j ae j aeF c      
 

2 1 ) 1 ) = 0.26 0.75(1 (j j ae j a jeF c      
 

3 2(1 () ) = 0.26+ 0.75j * j j ae j aeF c      
 

d
p n

4 (1 (1 1.01 1.0) 1)j jae ae jYF A A        
. 

With such coefficients the compensator equation has the 
form 

4 4 4 4
RS

ST

TR

3 10 10 10 10

0.52 0.26 0.26 1.01

0 0.75 0.75 1.01

T

T  

T

     
         
          . 

With respect to the compensator branch susceptances this 
equation has the solution : 

              RS ST TR0.58 S,  0.69 S,  2.04 ST T T   
 

Assuming that the supply voltage frequency is f = 50 Hz, 
thus  = 314 rad/s, then the compensator parameters are 

RS
RS

1
5 49mH,L .

T
  

ST T
ST TR

R2 20 mF,      6 50 mF
T T

C . C .
 

   
 

The circuit with the balancing compensator and compensa-
tion results is shown in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Unbalanced load with reactive compensator and 
compensation results. 

 
The reactive compensator with such parameters compensa-
tes entirely the reactive and unbalanced currents, reducing 
the three-phase rms value of the supply current from ||i|| = 
239.4 A to ||i|| = 77.5 A, which increases the power factor 
from λ=0.32 to λ=1. The load with the compensator is 
equivalent to a balanced resistive load of conductance Gb. 
Observe that the supply current remains asymmetrical, 
however, because of the supply voltage asymmetry. 
 
Conclusion 
 The paper demonstrates that LTI loads supplied with 
asymmetrical, but sinusoidal voltages can be compensated 
by reactive compensators to unity power factor. The pre-
sented method of total compensation of the reactive and 
unbalanced currents requires that equivalent balanced and 
unbalanced admittances of the load are calculated. This 
can be done by measurement of complex rms values of 
voltages and currents at the load terminals. 
 
Appendix 
Compensator equation 
 Since the crms value of the line voltage at terminal R is 
equal to  
           UR = U p + U n 
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equation (28) can be rearranged to the form  

  
pp n p p n n n

CCCd d( )( + ) ( ) ( ) = 0Y Y U U A A U A A U    
. 

Taking into account the definition of the complex coefficient 
of the voltage asymmetry (16), this equation can be rear-
anged as follows 

(A1)   p p n n
CC Cd d( ) ( ) ( )(1 ) = 0.j jae aeA A A A Y Y         

In this equation 

(A2)             p p p
ST TR RSC ( + )*j T T TA A A        

(A3)              n n n
C ST TR RS = ( + ) + *j T T T .A A A      

The asymmetry dependent unbalanced admittance, speci-
fied for the load by formula (25), for the compensator can 
be written in the form 

(A4)         1 ST 2 TR 3 RSCd  =  )( T  T Tc cY c     

where, 

(A5)   
df

1 2

df

2 2

df

3 2

2 cos

1

2 cos( 120 )

1

2 cos( 240 )

1

a 
j

a

 a 
j

a

 a  
 j .

a

c

c

c










 



 




  

 With formulae (A2) – (A4), equation (A1) can be rear-
ranged to the form 

(A6)   1 RS 2 ST 3 TR 4 0T  T T   F F F F     

where 

(A7)   1 3 )1 )( (j * j ae j aeF c         

(A8)   2 1( 1 )()1 j j ae j aeF c        

(A9)  3 2 )1 )( (j * j ae j aeF c         

(A10)  p n
4 d(1 (1) )j jae aeYF A A       

Equation (A6) has to be satisfied both for the real and for 
the imaginary parts, so that 

(A11)      RS 1 ST 2 TR 3 4

RS 1 ST 2 TR 3 4

Re Re Re Re 0

Im Im Im Im 0

T T T  

T T  T   .

F F F F

F F F F

   

   

  

When condition (26) is combined with condition (22) the 
third equation is obtained  

(A12)            2 2 2 2
RS RS ST ST TR TR b || ||T  U T U T U   B   u   

Equations (A11) and (A12) can be expressed in a following 
matrix form, referred to as a compensator equation  

(A13)   

2 2 2 2
RS ST TR RS

1 2 3 ST 4

1 2 3 TR 4

b ||

Re Re Re Re

Im Im Im Im

||U U U T B

T   

T  

F F F F

F F F F

    
          
         

u

  

with unknown vector of compensator susceptances, TRS, 
TST and TTR. 
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