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Abstract. We consider a servo dynamics with friction modeled by static, memoryless nonlinear function of velocity, with strong influence of Stribeck 
effect. We consider approximation of the Stribeck curve by a polynomial. The approximating polynomial coefficients become control parameters 
modified by the adaptive loop. We formulate the control algorithm and prove its stability by Lyapunov function approach, and finally we describe 
several numerical experiments demonstrating features of the proposed control and the influence of the parameters. 
 
Streszczenie. Przedstawiony niżej tekst opisuje problem sterowania napędowym układem nadążnym z tarciem, które może być modelowane przez 
statyczną, nieliniową funkcję prędkości z silnie zaznaczonym efektem Stribeck’a. Badamy możliwość aproksymacji krzywej Stribecka przez 
wielomian, którego współczynniki będą zmieniane w pętli sterowania adaptacyjnego. Wyprowadzamy algorytm sterowania i formułujemy warunki 
jego stabilności poprzez użycie odpowiedniej funkcji Lapunowa. Opisujemy szereg eksperymentów, które ilustrują charakterystyczne właściwości 
układu regulacji i dostarczają wniosków co do wyboru parametrów algorytmu sterowania. (Adaptacyjne sterowanie nadążnego układu 
napędowego z wykorzystaniem wielomianowej aproksymacji krzywej Stribeck’a) 
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Introduction 

Friction is the most common and most destructive 
disturbance affecting performance of precision motion 
control systems, especially linear or rotational servo drives. 
It may cause oscillations, decrease steady state accuracy 
and deteriorate tracking performance. The friction 
phenomenon is rather complicated and not yet completely 
understood, so several friction models are reported in the 
literature [1]. Usually the experimental information about 
friction is corrupted by noise and outliers and inaccurate. It 
was reported [2], that using a fuzzy model of friction 
connected with adaptation of its parameters is an effective 
approach for friction compensation, even if dynamical 
friction model is/would be more adequate for the examined 
case.  

In this contribution we consider a servo dynamics with 
friction modeled by static, memoryless nonlinear function of 
velocity, with strong influence of Stribeck effect. The aim of 
friction modeling is to use the model in an adaptive control 
scheme, so it is  important to construct linearly 
parameterized model. We propose to approximate the 
Stribeck curve by a polynomial. The approximating 
polynomial coefficients will become control parameters 
modified by the adaptive loop. We check if satisfactory 
results may be obtained if the real friction is described by 
LuGre model [3] with the same steady state characteristics. 

We start with describing the plant model and the control 
aims, next we formulate the control algorithm and prove its 
stability by Lyapunov function approach, and finally we 
describe several numerical experiments demonstrating 
features of the proposed control and the influence of the 
parameters. 
 
Plant model and control objectives 

We consider a linear servo described by  

(1) vx
dt

d
  

(2) fFicv
dt

d
m   

where v is the forcer velocity, m – the forcer mass, c 
represents the coefficient converting the motor current i into 
the thrust force, and Ff  is an external load – mainly a 

friction force. The motor current i is supplied by a PWM 
inverter working in a current control mode and we assume 
the this loop is much faster than mechanical dynamics, so 
we consider i as a control input. We assume that the 
parameters m, c, are unknown, constant or slowly varying. 
The friction force is modeled as nonlinear function of speed 
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where fs is the level of static friction , fc is the minimum level 
of Coulomb friction vs is the lubricant parameter (so called 
Stribeck velocity), B - viscous friction parameter and δ is an 
even constant. The function describing the Stribeck curve 
g(v) proposed in (3), is only one of the possibilities – several 
other are reported [1].  

 Although we have formulated the problem using linear 
motion equations, the same approach may be used easily 
for rotational servo. 

 We will assume that for the control purposes the friction 
curve (3) will be approximated by 

(4) 
i

N

i
i va)v(signP 




0

. 

In (4) we assume that the friction curve is symmetrical, but 
we may use different approximating polynomials for positive 
and negative velocities. 

The control objective is that the motor position has to follow 
a smooth reference xd. We denote the tracking error by 

(5) xxe d 1 . 

Control algorithm 
 We apply adaptive backstepping scheme [4] to design 
the controller. The velocity will be the ‘virtual control’ for 
position tracking. If we choose the desired velocity dv  

according to 

(6) 11 ekxv dd   . 

where 11 0k  is a design parameter, we will be able to 

describe the tracking error dynamics as  
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(7) 2112111 eekeekxxe dd   , 

where  

(8) vekxvv:e dd  112   

denotes the speed tracking error. Dynamics of this error 
may be described using (8, 7, 2) as 

(9) 
c
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The derivative of the reference speed is given by 

(10)  2111 eekkxv dd   , 

so it is available for control algorithm.  

The control variable i has to compensate function  

(11) fdo F
c

vmD
1

   

We will use a model D̂  for D , incorporating friction model 

(4). The general structure of D̂  will be given by 

(12)  TˆD̂ A . 

where TÂ is row of adaptive parameters and  is known 

(regressor) function of appropriate dimension.  Because of 
the structure of (11) and (4) we consider model with N+2 
parameters 

(13)  N
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 respectively and   
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We assume that ‘good’ models exists with bounded 

parameters *A  

(15) ξA
T**D  ,  max

* aA , 

leading to the bounded value of 

(16) *DD:  ,   max  . 

We denote the error between “good’ and actual adaptive 
parameters by:  

(17) AAA ˆ~ *  . 

If we choose the control law according to  

(18) 122
ˆ eekDi  , 

where k2 is a positive design parameter, we get the tracking 
error dynamics 
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We verify the system stability by Lyapunov function 
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with positive definite matrix  . Calculation of the system 

derivative confirms, that under adaptive laws:  
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we are able to prove that the system derivative of (20) is 
negative outside a certain, bounded set, and so 21 e,e  are 

uniformly ultimately bounded. For example with adaptation 
performed according to (21) we get 
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and it is negative outside the set 
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so the system describing the error dynamics (7,19) is 
uniformly ultimately bounded (UUB) and we are able to 
modify the diameter of the bound by proper choice of k1, k2. 
Similarly taking adaptive law (22) we get that  
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where  21 k,kminkmin  , so we are able to prove that both 

errors e and A
~

 are UUB. 

Numerical experiments 

The data for friction modeling may be collected during 
several on-line experiments. If we can measure or estimate 
the external force, calculate the thrust force (from 
measurement of motor currents for example), we are able 
to estimate the friction force. Sporadically it is possible to 
apply a constant external force (from an another drive, or 
from a gravitational load), while the thrust force is zero. In 
this case we may try to tune the friction model parameters 
by curve fitting comparing measured position history with 
numerical solution of the motion equation. Another 
possibility is to use simple observers [2].  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Stribeck curve ([N] versus [m/s]) and the data corrupted by 
measurement noise 

 
Despite the method we choose, the obtained data will 

be corrupted by estimation error and subject to 
estimation/measurement noise and outliers. In such 
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circumstances the accuracy of polynomial approximation 
will be limited and the usage of high order polynomials is 
not justified. 

In figure  1  we show Stribeck curve with parameters 
fc = 5 N, fs - fc =1 N, vs = 0.15 m/s, B = 3 Ns/m, δ = 2 and the 
measured data corrupted by a measurement noise 
uniformly distributed in interval [-a, a]. Norm of residual as 
function of approximating polynomial degree is plotted in fig. 
2 for different noise amplitudes a. As we see the choice of 
polynomial degree N=5 is reasonable and such polynomial 
P was derived. 
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Fig.2. Norm of residual versus approximating polynomial degree for 
noise amplitude a=0.1,0.2,0.4 

 
The proposed approach was verified by numerous 

numerical simulations conducted with the motor model 
parameters m=7.04 kg, c=39N/A. The system was to track 
sinusoidal position trajectory 

).t.sin(.)t(xd 2508040  with initial condition x(0)=0. 

First we demonstrate the system performance under 
linear control. It is well known that if we apply linear 
controllers, overestimation of friction results in oscillations 
while underestimation produces steady state tracking error 
[5]. In fig. 3 we illustrate the tracking error with PD controller 
in case of ‘almost accurate’ compensation, i.e. 
compensation by polynomial P, overcompensation (by 
polynomial 1.3P) and undercompensation (by polynomial 
0.7P). 
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Fig.3. Position tracking error [m]: friction compensated (solid), 
overcompensated (dashed), undercompensated (dotted) 
 

 In fig. 4-6 we illustrate the performance of adaptive 
backstepping controller (18) with two adaptive parameters 
and adaptation law (22). Starting values of adaptive 
parameters correspond to approximation of m and c with 

20% error. Adaptation was blocked while the current 
saturation (the saturation level was 1A) was active – as it 
was recommended in [6]. As we notice the tracking 
accuracy is excellent. The adaptive gains are bounded and 
approach the desired values. The control input is bounded. 
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Fig.4. Position tracking error [m] 
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Fig.5. Adaptive gains 
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Fig.6. Control input – motor current [A] 
 

Experiments were repeated for a linear servo with 
friction described by LuGre model [3]: 

(26) 
)(

)(
vg

zv
vtz  , 

































sv

v

csc e)ff(f)v(g
0

1
 

8 10 12 14 16 18 
-0.015 
-0.01 

-0.005 
0 

0.005 
0.01 

0.015 

time 

tr
ac

ki
ng

 e
rr

or
 

8 10 12 14 16 18 20
-4

-3

-2

-1

0

1

2

3

4
x 10

-4

time 

tr
ac

ki
n

g 
er

ro
r  



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 5/2014                                                                                          23 

(27) BvzzFfriction  0 ,  

where σ0 is the equivalent stiffness coefficient  and τ is the 
equivalent damping coefficient of bristles. 

 In the case of high bristle stiffness the control system 
performance was quite similar to the previous case, as it is 
illustrated by fig. 7. Lower stiffness results in slight 
deterioration of tracking accuracy as it is visible in fig.8, and 
may be improved by parameter tuning.  
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Fig.7. Position tracking error. LuGre friction, high bristle stiffness 
σ0=104, τ=400 
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Fig.8. Position tracking error [m]. LuGre friction, low bristle stiffness 
σ0=103, τ=100 
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Fig.9. Stribeck curve ([N] versus [m/s]) and approximating 
polynomials: degree=5 (solid), degree=3 (dashed), degree=2 
(dotted) 
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Fig.10. Position tracking error [m] for different polynomials 
approximating the friction: degree=5 (solid), degree=3 (dashed), 
degree=2 (dotted) 
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Fig.11. Position tracking error [m] for different polynomials 
approximating the friction: degree=5 (solid), degree=3 (dashed), 
degree=2 (dotted), LuGre friction, low bristle stiffness σ0=103, 
τ=100 
 
 Finally we investigate the influence of the approximating 
polynomial degree on the control system performance. In 
fig. 9 we plot the original Stribeck curve and some 
approximating polynomials. As we may notice none of them 
exactly approximates the friction, especially in a speed 
range [0, 0.4] in which the system operates under the 
proposed excitation. In fig. 10 we see the tracking error 
history if the friction is modelled be approximating 
polynomials demonstrated in fig. 9. The tracking error 
decreases with the polynomial degree increase, but in all 
cases the adaptive loop is able to compensate the model 
inaccuracy and to provide satisfactory tracking. So, under 
the desired trajectory considered, proper tuning of adaptive 
control parameters is more important than the friction model 
accuracy. The same thesis may be repeated for a linear 
servo with friction described by LuGre model. In fig. 11 we 
demonstrate the tracking error in case of low bristle 
stiffness and unmodelled current control dynamics with time 
constant 1 ms. 
 
Conclusions 

Numerical experiments have proven that polynomial 
approximation of friction may be utilized together with 
adaptive backstepping control to improve electric linear 
servo performance. The proper choice of control system 
parameters was not difficult and the derived system stability 
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and convergence was confirmed by simulations. All signals 
(especially current) remain bounded and acceptable.  

The proposed approach is also promising in case when 
plant friction demonstrates dynamical behavior 
corresponding to LuGre model features.  

The controller was also tested against unmodeled 
dynamics in the current control loop. It was robust in 
presence of current control time constant up to several ms.  
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