
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 4/2014                                                                               173 

Piotr KOPNIAK 

Institute of Computer Science, Lublin University of Technology, Lublin, Poland 
 
 

The Use of Multiple Cameras for Motion Capture 
 
 

Streszczenie. Artykuł dotyczy procesu budowy taniego systemu rejestracji ruchu. Rozwiązanie to wykorzystuje kamery PlayStation 3 Eye. Artykuł 
ten pokazuje, w jaki sposób wykonać synchronizacje wielu kamer i jak stworzyć oprogramowanie do rejestracji i przetwarzania danych wideo 
w czasie rzeczywistym. Niniejszy artykuł prezentuje także algorytm i rezultaty wyszukiwania oraz śledzenia ruchu jednokolorowych obiektów na 
podstawie obrazów z dwóch zsynchronizowanych kamer. (Wykorzystanie wielu kamer do rejestracji ruchu). 
 
Abstract. This article concerns the creation process of a cheap optical motion capture system. The solution uses PlayStation 3 Eye cameras 
The paper shows how to synchronise multiple cameras and how to develop software for capturing and processing real-time video data. The article 
presents an algorithm and the results of findings and tracking of mono-colour objects based on images from two synchronised cameras, too. 
 
Słowa kluczowe: rejestracja ruchu, widzenie komputerowe, przetwarzanie obrazu, synchronizacja kamer. 
Keywords: motion capture, computer vision, image processing, camera synchronization. 
 

doi:10.12915/pe.2014.04.40 
 

Introduction 
Motion capture techniques allow to record the motion of 

a human body for further processing or electronic devices 
steering thanks to gesture recognition. The techniques are 
now used in medicine, movies, different types of 
entertainment and computer games production [1-4]. 
Implementation of this new technology involves a number of 
problems. One of them is the cost of equipment. 
Professional optical motion capture systems like Vicon 
products are costly because they use heavy duty cameras. 
The cameras may take up to 200 frames per second and 
each frame has 5 Mpixel resolution [5-7]. Many solutions in 
real life do not require such precision and may be build 
cheaper. Economical solutions may be constructed on the 
base of common devices like web cameras, PlayStation 3 
(PS3) Eye cameras [8] or Microsoft Kinect sensors [9].  

Proposed motion capture solution is based on a set of 6 
or 8 PS3 Eye cameras located around 3D scene which 
observes the scene from different angles. Various points of 
view allow us to compute 3D object location from their 2D 
images and compute object motion in 3D space on the base 
of sequences of 2D camera frames. Stereovision methods 
[10, 11] may be used for this step of image data processing. 

The construction of the system is possible because of a 
special multi-camera software driver. PS3 camera uses 
USB port to communicate with a game console or a PC. 
Windows system standard drivers can find only one PS3 
camera despite a few cameras connected in parallel. To 
use multiple cameras simultaneously we must use a special 
driver. We can download such driver for two cameras freely 
from Code Laboratories. If we want to capture video with 
more cameras we must buy commercial version of the 
driver [12].  

Processing video streams from multiple cameras causes 
a very important problem of time synchronisation. When we 
develop a motion capture system we must have pictures 
taken by all cameras at the same time as the accuracy of 
computing the spatial position of objects in 3D space 
depends on this synchronisation. Preparing the 
synchronization is a part of our research and it is described 
in the next section of the paper. 

After properly made synchronization, the images taken 
at the same time by two or more calibrated cameras and 
located in fixed positions allows us to compute a 3D object 
location. In our case the objects will be colour LED markers 
mounted on a human body. A 3D location of markers will 
indicate the location of a human body parts and allows to 
calculate the angles of joints. Determined marker locations 
function of time on a base of sequences of taken frames 
represent captured motion of the human body. 

Synchronisation of cameras 
Based on the analysis of PlayStation Eye camera 

construction [13, 14] the hardware synchronization of two 
Eye cameras was prepared during our research.  

PlayStation Eye camera uses OV7720 series CMOS 
VGA sensor made by OmniVision Technologies. A top view 
of pinout and a fragment of a block diagram which 
describes the input and output of a video timing generator 
of the chip is presented in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Pinout and fragment of OV7720 CMOS VGA chip block 
diagram 
 

In synchronization process we used two pins: FSIN and 
VSYNC of the sensor. The FSIN pin is the frame 
synchronization input to the CMOS and the VSYNC pin is 
the vertical sync output. VSYNC signal is the signal which 
releases the camera shutter and causes frame recording. 
FSIN signal is a clock input to produce appropriate VSYNC 
signal.  

 
 



174                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 4/2014 

We may synchronize two cameras connecting VSYNC 
pin of a master camera and FSIN of a slave camera. The 
signal passed into FSIN input enforces generation VSYNC 
of the slave camera synchronized with VSYNC of the 
master camera. Figure 2 shows the positions of VSYNC 
and FSIN connectors on the camera board.  

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Fig.2. Location of VSYNC and FSIN connectors on PS3 camera 
board 

 
VSYNC signal is rectangular signal with 3.3 V peaks 

lasting for 280µs. A frequency of the signal is 30 Hz in VGA 
mode and 60 Hz in QVGA mode. It means that if we want to 
synchronize multiple cameras, we should make an 
electronic module which reproduces and amplifies a 
VSYNC signal and next connect it into FSIN pin of each 
slave camera. 
 
Verification of cameras’ synchronisation 
 The next step was a verification of made camera 
synchronization. We used a two-way oscilloscope to 
measure VSYNC signals of two unsynchronized and 
synchronized cameras. Figure 3 shows VSYNC signals 
before and after synchronization. As we can see, in Figure 
3 unsynchronized signals have peeks in different points of 
time and synchronized signals have peeks at the same 
moments. It means that synchronization was made 
appropriately and images are taken by different cameras in 
the same time.  
 
Multi-camera video capturing 

As it was mentioned above if we want to design 
application which uses multiple cameras we may use CL-
EyeMulticam driver. Code Laboratories provide CL Platform 
Software Developer Kit, too. The SDK gives developers a 
full access and control over the camera usage and 
manipulation. The APIs provided are exposed as standard 
C based functions for portability and ease of use, also the 
full source code of all sample applications is included that 
acts as a baseline testing framework.  

It has been decided to make a motion capture 
application in Java language. It is possible because the 
Platform's SDK consists of wrappers for numerous 
programming languages and many application examples for 
different languages, too. One of them is Java/Processing 
wrapper. The wrapper provides classes and functions for 
Processing script language based on Java. The interface 
can be used to develop a pure Java application, too.  
 
 
 
 
 
Fig.3. VSYNC signals of unsynchronized and synchronized PS3 
Eye cameras 
 

Multi-camera video capturing 
As it was mentioned above if we want to design 

application which uses multiple cameras we may use  
CL-EyeMulticam driver. Code Laboratories provide CL 
Platform Software Developer Kit, too. The SDK gives 
developers a full access and control over the camera usage 
and manipulation. The APIs provided are exposed as 
standard C based functions for portability and ease of use, 
also the full source code of all sample applications is 
included that acts as a baseline testing framework.  

It has been decided to make a motion capture 
application in Java language. It is possible because the 
Platform's SDK consists of wrappers for numerous 
programming languages and many application examples for 
different languages, too. One of them is Java/Processing 
wrapper. The wrapper provides classes and functions for 
Processing script language based on Java. The interface 
can be used to develop a pure Java application, too.  

To develop a multi-camera Java application we have to 
use functionality packaged into CL-EyeMulticam.dll 
native library. The C library may be used through Java 
Native Interface (JNA) mechanism. We must prepare own 
Java class which will load the library with use of the 
standard Java System.load(dll_path) method. The 
class can use a native code through special Java methods 
which must be developed. The methods have to be native, 
static, empty and their names and argument lists must be 
the same as the names of methods implemented in the dll 
library. For instance, the method returning the number of 
connected PS3Eye cameras should be defined as:  

 
 native static int CLEyeGetCameraCount(); 
 
For capturing process we must create camera instance 
using the method: 
 
 int CLEyeCreateCamera(int cameraIndex, 

  int mode, int resolution, 
   int framerate); 
 

next, we must start capturing: 
 
 boolean CLEyeCameraStart( 
   int cameraInstance); 
 
and capture the camera frame: 
 
 boolean CLEyeCameraGetFrame( 
   int cameraInstance,  

  int[] imgData, 
  int waitTimeout); 
 

Captured image data in RGBA color space will be saved 
into imgData[]array. Next the data may be processed or 
displayed. In our case the next processing step was finding 
single-colour objects and computing their centers-of-gravity 
(COG) with the use of OpenCV library.  
 
Detecting objects and calculating their COG's with the 
use of OpenCV 

OpenCV is a real-time computer vision library with very 
rich functionality. It has got over 500 high-level and low-
level functions [15]. OpenCV is an open source and has API 
interfaces for many programming languages and platforms, 
including Android. Since 2.4.4 version it has had a full 
functional Java wrapper. However it have been used a 
different Java wrapper – JavaCV. 

Our tracking algorithm is based on finding mono-colour 
image areas which represent the tracked objects and 

 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 4/2014                                                                               175 

determination of their center points location. To find the 
location of the mono-color object in a grabbed frame we use 
color thresholding and center-of-gravity computation. PS3 
Eye camera produces images in RGBA color space. We do 
not need the alpha channel for color detection. OpenCV 
cvCvtColor(srcImage, dstImage, CV_RGBA2RGB) 
function converts the captured four-channel image into a 
three-channel RGB space. The color thresholding in RGB 
color space is not a good solution, either, because of the 
natural irregularity of object brightness which causes huge 
differences in RGB channel data and huge thresholding 
errors. The thresholding should be done in HSV color space 
where the color's hue is represented by one channel only. 
An appropriate color space conversion may be done with 
cvCvtColor() function whose the third parameter equals 
CV_RGB2HSV. To eliminate the camera noise and to 
achieve better result the source image is additionally filtered 
by cvSmooth() OpenCV's function with a median filter. 

The found object is represented as a group of image 
pixels with a regular or irregular shape. We may use 
moments to obtain mathematical expression for the center 
of the shape [8]. In physics the moment M expresses how 
force F operates at distance d along a rigid bar from a fixed 
fulcrum. The point where the force operates may be 
replaced by the point with a mass. In case of a computer 
vision, pixels replace points and the mass component can 
be replaced by a pixel function, e.g. pixel intensity.  

Let us assume that each pixel pi has intensity Ii and (xi, 
yi) coordinate in two dimensional image space. The sum of 
the pixels' moments around y-axis is as follows: 

 (1)  nny xIxIxIM  ...2211  

The sum of pixels' moments around x-axis may be written 
as: 

 (2)  nnx yIyIyIM  ...2211  

and summary of whole system intensity as:  

 (3)  nsys IIII  ...21 . 

The distances of shape from the x and y-axis are described 
by following equations: 

 (4)  
sys

x

sys

y

I

M
y

I

M
x  , . 

The center-of-gravity point, ),( yx is the shape's center. 

With OpenCV we may calculate different types of moments 
using a parameterized equation: 

 (5)  
q

n

i

p
i yxyxIqpm 




1

),(),(   

where function arguments p and q are the powers for x and 
y, and I(x,y) is a pixel intensity function. Moments may be 
expressed as function m() with different parameters. The 
moments' equations and summary of system intensity may 
be written as: 

 (6)  )0,0(),0,1(),1,0( mImMmM sysyx  . 

It means that center-of-gravity ),( yx can be expressed as: 

 (7)  
)0,0(

)1,0(
,

)0,0(

)0,1(

m

m
y

m

m
x  . 

All moments are calculated at once thanks to one 
cvMoments() function of OpenCV library. It produces 
CvMoments object with all needed moments' data. A piece 
of Java code for moment and COG (posX, posY) 
calculation is presented below: 
 
 CvMoments moments = new CvMoments(); 
 cvMoments(detectThrs, moments, 1); 
 double mom10 = 
  cvGetSpatialMoment(moments, 1, 0); 
 double mom01 = 
  cvGetSpatialMoment(moments, 0, 1); 
 double area = 
  cvGetCentralMoment(moments, 0, 0); 
 posX = (int) (mom10 / area); 
 posY = (int) (mom01 / area); 
 
 Results of our COG position determination and tracking 
paths are presented in Figure 4. As we can see there are 
two images captured by two PS3 Eye cameras. The images 
have drawn white paths which represent motion of the 
same red LED marker recorded by two synchronized 
cameras. 

 
 

 
 
 
 
 
 
 

Fig.4. Output video frames of two synchronized Eye cameras with 
red LED marker tracing paths 

 
Discussion 

OpenCV The calculated centers-of-gravity of an object, 
recorded by multiple cameras allow us to determine the 
object location in 3D space with the use of stereovision 
methods. The review, comparison, and implementation of 
the methods in our processing application will be the next 
step of our research.  

Documentation of Eye camera CMOS describes 
different work modes of the sensor. As it was mentioned 
above in default it can capture 30 fps in VGA mode and 60 
fps in QVGA mode. This frequency value is enough to save 
a standard movie but is too low when we want to capture 
fast human moves. The camera sensor may be configured 
to achieve higher frequencies through FrameGrabber 
OpenCV's class instance, e.g. we use VGA mode with 60 
fps frequency. It gives higher motion capture accuracy. We 
did not find the highest frequencies but it will be verified in 
the future.  

The developed software does complex computation. We 
tested our application with two cameras only and the output 
videos after processing were not fluent enough. It was 
because the computation was done by CPU only. OpenCV 
has an interface to use nVidia CUDA technology for 
supporting complex computation with the support of a 
graphic card. It requires CUDA graphic drivers and CUDA 
toolkit installed. We plan to use this technology to 
accelerate our processing. 
 
Conclusion 

There are different motion capture systems available on 
the market. The systems for professional use are very 
expensive. It is possible to build an easier and much 



176                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 4/2014 

cheaper solution. We may use PS3 Eye cameras for this 
purpose. This article describes how to synchronize and use 
multiple cameras in parallel and how to develop appropriate 
processing software. We proved that it is possible to make 
hardware synchronization of PS3 Eye cameras and that it 
works correctly. This article proposes methods for detection 
of color markers and their motion tracking, as well. The 
methods are still developed, optimized and will be 
supplemented with stereovision methods to achieve the full 
functionality of a less expensive motion capture system in 
the future.  

 
REFERENCES 

[1]  K i tagawa M. ,  W indsor  B . ,  MoCap for Artists. Workflow 
and Techniques for Motion Capture, Elsevier, (2008) 

[2]  Menache  A . ,  Understanding Motion Capture for Computer 
Animation and Video Games, Morgan Kaufmann, (2000) 

[3]  Kopn iak  P . ,  Motion Capture Data Visualization Developed 
with the Utilization of jMonkeyEngine, Computer Graphics. 
Selected Issues, University of Szczecin, (2010) 

[4]  Skub lewska-Paszkowska M. ,  Łukas ik  E . ,  
Smo łka J . ,  Analysis on motion interpolation methods, Actual 
Problems of Economics, National Academy of Management, 
Kyiv, 137 (2012), No 11, 448-455 

[5]  Vicon Motion Capture System: http://www.vicon.com/, (2013) 
[6]  Liberty Motion Capture System: http://www.polhemus.com/, 

(2013) 
[7]  Shape Wrap II Motion Capture System: 

http://www.measurand.com/, (2013) 

[8]  Killer Game Programming in Java Homepage: 
http://fivedots.coe.psu.ac.th/~ad/jg/index.html, (2013) 

[9]  Kopn iak  P . ,  Rejestracja ruchu za pomocą urządzenia 
Microsoft Kinect, Pomiary Automatyka Kontrola, 58 (2012), 
1477-1479 

[10]  Kęs ik  J . ,  Evaluation of the Stereo-Counterpart Search Area 
for the Stereovision Algorithms Using the Surveillance Type 
Cameras Set, Polish Journal of Environmental Studies, 18 
(2009), No. 3b, 154-159 

[11]  Kęs ik  J . ,  Projekt systemu skanowania obiektów 3D, z 
wykorzystaniem platformy obrotowej i układu stereowizyjnego, 
Pomiary Automatyka Kontrola, 57 (2011), 1483-1485 

[12]  Code Laboratories Products: 
http://codelaboratories.com/products/, (2013) 

[13]  OV7720/OV7221 CMOS VGA (640x480) Camera Chip Sensor 
with OmniPixel2 Technology, 
http://www.zhopper.narod.ru/mobile/ov7720_ov7221_full.pdf, 
(2013) 

[14]  OV7720 VGA product brief, 
http://www.ovt.com/download_document.php?type=sensor&se
nsorid=79, (2013) 

[15]  B radsk i  G . ,  Kaeh le r  A . ,  Learning OpenCV, Computer 
Vision with the OpenCV Library, O'Reilly, (2008) 

 
 
Author:  
dr inż. Piotr Kopniak, Lublin University of Technology, Computer 
Science Institute, ul. Nadbystrzycka 36 B, 20-618 Lublin, E-mail: 
p.kopniak@pollub.pl. 

 


