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Abstract. A study is presented on the topic of numerical efficiency of TD-FEM with the use of BDF. The BDF coefficients are calculated with the use 
of Lagrange polynomials. The paper also presents two strategies of time-step adaptation. The obtained numerical solutions have been compared 
with analytical solutions of the selected problems in order to check their accuracy. 
 

Streszczenie. Przedstawiono badania na temat efektywności numerycznej metody TD-FEM przy wykorzystaniu metody różnic wstecznych. 
Współczynniki metody różnic wstecznych otrzymano za pomocą wielomianów Lagrange’a. W artykule przedstawiono również dwie strategie 
automatycznego doboru kroku czasowego. W celu sprawdzenia dokładności rozwiązań numerycznych porównano je z rozwiązaniami analitycznymi 
rozpatrzonych zagadnień. (Analiza efektywności numerycznej metody TD-FEM z wykorzystaniem metody różnic wstecznych). 
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Introduction 

The paper presents studies that are a part of a larger 
project concerning electromagnetic field computation and 
the analysis of efficiency of the finite element method. Many 
complicated problems require analyses that are 
computationally expensive (e.g. coupled field, nonlinear 
problems [1] or ones complicated geometry). This is why 
many studies are performed to find possible ways of 
reducing computation time of the finite element method 
(e.g. by parallel computing [2] or by choice of optimal 
methods [3]). 

Whether the problem concerns a simplified or 
complicated model – the computation of the 
electromagnetic field distribution involves the solution of a 
system of linear equations: 

 

(1) ,FKu   
 

or nonlinear equations if the environment parameters are 
dependent on the electromagnetic field. In equation (1) K is 
the stiffness matrix, while F is the load vector and u is the 
vector of the computed values (degrees of freedom). 
 There exist many problems e.g. like in [1, 4] that require 
a transient analysis (even in time-periodic problems when 
nonlinearity is involved). This requires a more advanced 
variant of the finite element method to be used. For some 
problems it may be computationally efficient to apply special 
methods like HBFEM [5] (for time periodic problems) but a 
more general way is the application of TD-FEM methods   
[6, 7] (Time-Domain Finite Element Method). This approach 
is used in most well-known commercial software created for 
the purposes of solving electromagnetic field problems with 
the finite element method. 
 The application of the TD-FEM requires an additional 
discretization in time, where the previously mentioned 
system of equations is solved for consecutive time-steps. 
For a large number of degrees of freedom the computation 
of the solution often requires a considerable amount of time, 
hence in the TD-FEM method, among many other factors 
generally influencing the accuracy of the finite element 
method, it is important how the approximation of the time 
derivative is performed. 
 This paper discusses an application of the BDF 
(Backward Differentiation Formulae) [8] for the time 
derivative approximation. 

The issue of time-step adaptation has also been raised 
as it determines not only the amount of steps taken but also 
has an influence on the solution accuracy. 

Backward Differentiation Formulae 
The time derivative of a component u (e.g. a component 

of the magnetic vector potential A, which is used later on) 
by means of a BDF (with various time-steps between 
values) is given by: 
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n denotes the order of the BDF (n = 1 means the backward 
Euler scheme), tm is the time value for the current step, um is 
the component value for the current time-step. ℓj is the 
Lagrange polynomial which is 1 at tj and 0 at every other 
included time-step. 

The choice of BDF for the time derivative approximation 
is motivated by the fact that in this case: 
  – the number of unknowns does not change with BDF 

  order in the solved system of equations and it is the 
  same as when solving a quasi-stationary problem 
  (however in the case of TD-FEM the system is 
  solved for each time-step), 

  – the multipliers of consecutive values of u in time are 
  common for all degrees of freedom. 
 

Finite element formulation 
The diffusion equation for the electromagnetic field, for a 

single component of the magnetic vector potential, is given 
by: 

 

(4) ,ext
2

t

A
JA




   

 

where Jext is current density component produced by 
external voltage. 
 By applying the Galerkin formulation, (4) yields a system 
of equations, which for linear environment parameters can 
preliminarily be expressed by: 
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where e.g. for a 2D problem the values of the matrix h are 
given by [3, 9]: 
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while for the vector f: 
 

(7)  ,dddext  






n

A
NyxNJ iiiif  

and the matrix g: 
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i and j are node numbers and N with an appropriate index 
denotes the respective finite element shape function.  is 
the contour describing the boundary of the region , while n 
is the direction normal to the boundary at a given point. 
Taking into account the approximation (2) one can write the 
rightmost expression of (5) as: 
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At t = tm the only unknown value for each degree of freedom 
is um. In consequence, for a system (1), the multiplier of um 
contributes to K while others are added to the load vector: 
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Time-step adaptation 
A time-step adaptation technique can significantly 

increase the accuracy of the solution and reduce 
computation time [3, 10] by obtaining the electromagnetic 
field distribution at time values distant by optimally chosen 
t. In the discussed study the choice of the time-step value 
t is made by means of a predictor-corrector scheme. Two 
different strategies are applied and compared: 
 A) a BDF of order n is chosen; for every time-step the 

  predictor step uses the solution for a BDF of order             
  n  – 1 while the corrector step then applies a solution 
  with the time derivative approximated by the BDF of 
  order n, 

 B) two solutions are compared for different BDF of 
  order n [10]. 
 Strategy B requires further clarification. For the predictor 
step instead of a time-derivative of t = tm a formula is 
applied for the value between the current and previous t. In 
this case the time-derivative approximation is: 
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qi are coefficients computed from the same Lagrange 
polynomials as in (3) but at a different time t: 
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The left-hand side of (12) is replaced by a linear 
interpolation between time derivatives at tm and tm_–_1. 
Equation (12) then takes the form: 
 

(14) .2
10 


 








mtt

n

i
imi

mtt t

u
uq

t

u
 

The time derivative at t = tm – 1 is obtained from a 
previous time-step hence the only unknown on the right-
hand side is again the value um. In this case the rightmost 
component of (5) yields: 
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 A simple error estimation is applied in this paper. The 
local error at node j is assumed as: 
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where the A" vector denotes the values of the corrector 
solution and A" are the predictor solution values. The error 
value for a supposed optimal time-step is: 
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from the maximum difference between the predictor and 
corrector solutions is taken into account: 
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and thus the time-step change is applied according to: 
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where t′ is the newly chosen time-step; ectrl is the 
acceptable error value. Furthermore, a value emax is 
determined, such that if max|A"–A'| > emax then the time-step 
is changed according to (19) and computations are 
repeated for a new t. 
 

Exemplary problems 
In order to perform the analysis of numerical efficiency 

two simple problems are solved – one of linear symmetry, 
where the weak formulation is: 
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and the other of cylindrical symmetry, where for a cylindrical 
coordinate system one obtains: 
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 is the test function,  is the considered region and  
denotes its boundary. 
 Neumann boundary conditions of the form: 
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are applied, where n is the direction normal to the boundary 
 at a given point and 1 = 2f1. The two different 
frequencies are imposed in order to add an additional 
difficulty to the time adaptive process – the task is to 
ascertain if the strategies described in the previous 
paragraph can capture the faster and less significant 
changes (because of the ten times smaller amplitude in the 
boundary condition). 
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 The choice of such simple problems allows the 
numerical result to be compared with analytical solutions 
obtained from literature [11] (and applied separately for 
each imposed frequency) thus making the error analysis of 
the selected methods simple and reliable. 
  

Analysis of numerical efficiency 
The analysis is performed in terms of the computation 

time and the solution accuracy. The latter is ascertained in 
a comparison to the analytical solution. An average relative 
error er has been computed (denoted later by er1 and er9 for 
the respective frequencies f1 and 9f1) by the formula: 

 

(23)   ,%100/ anannumr  AAAe  
 

where the overlined values indicate averages for the 
degrees of freedom. Anum are the complex values obtained 
by applying the Vaniček method [12] on the numerical 
solution. Aan are the values of the analytical solution. 
 Numerous trials have been performed, where ectrl and 
emax are set respectively to: 
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where m is changed at every trial. This has been done for 
both strategies (denoted by A and B) for BDF orders n from 
2 to 6 (n > 6 is not analyzed since it is known for its stability 
issues [13]). 

Once the results have been gathered the total 
computation time values, for the two strategies and various 
BDF orders, have been compared for results with close 
values of er1 and er9. Typical results from such comparisons 
are displayed in Figure 1 for the problem with linear 
symmetry and in Figure 2 for the cylindrically symmetric 
problem. 
 

 
 

Fig.1. Comparison of selected trials of computations (performed 
with a) strategy A, b) strategy B) for a considered problem of linear 
symmetry. * – for strategy A and n = 2 the computation time was 
94.0 seconds 
 

 
 

Fig.2. Comparison of selected trials of computations (performed 
with a) strategy A, b) strategy B) for a considered problem of 
cylindrical symmetry. * – for strategy A and n = 2 the computation 
time was 116.7 seconds 
 

 From the results presented in the figures and others that 
have been obtained it has been noticed that strategy B 
handles the problems much more efficiently in the case of n 
= 2 (about 4 to 5 times shorter computation time) and for  n 
= 3. An apparent increase in efficiency is noticed for the 
increase of n up to 4. At this BDF order both strategies 
exhibit similar efficiencies. However, for strategy B, the 
efficiency doesn’t change much for a greater n. In the case 
of strategy A the efficiency improvement is noticeable up to 
n = 5. 

In the presented study the comparison of computation 
times is similar to comparing the numbers of performed 
iterations. This is so because the most time consuming 
process in each time-step was the solution of the system of 
equations built as a consequence of (20) and (21). The 
significance of the computation time of the system-solving 
process is even bigger e.g. for nonlinear problems with 
large numbers of degrees of freedom. A comparison of the 
numbers of iterations for selected trials (same ones as in 
Figures 1 and 2) is presented in Figure 3 (the results for  n = 
2 have been omitted since they are significantly worse than 
the rest). 
 

 
 

Fig.3. Comparison of numbers of performed iterations for various 
time adaptation strategies and BDF orders 
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Conclusions 
The study has shown that satisfactory accuracies can 

be obtained when using a predictor-corrector scheme that 
applies the BDF. The accuracy is dependent on the chosen 
values ectrl and emax. In most cases an increase in the order 
of the BDF has allowed for the computations to be 
completed in a shorter period of time while keeping a close 
error value. 

Two strategies of the time-step adaptation process have 
been compared (denoted respectively as strategy A – 
where BDF of order n – 1 and n are used and strategy B – 
that applies two different backward differentiation formulae 
of order n). Several trials have been performed for both 
strategies and various BDF orders. For solutions of similar 
accuracies (expressed by obtained error values) the results 
have been compared in terms of computation time and the 
number of performed iterations. It has been noticed that for 
strategy A the efficiency has improved significantly up to     
n = 5 while only up to n = 4 when applying strategy B. The 
results are clearly better for strategy B in case of n = 2 and  
n = 3, while the smallest computation times in general have 
been achieved for n = 5 and n = 6 when applying strategy A. 

One can of course argue about whether in all cases the 
rise of n will contribute to the decrease of computation time, 
which is why problems with changes in 2 and 3 spatial 
coordinates will be studied in the future. It is however 
evident that the increase in the algorithm from n = 2 to n = 3 
causes the computations to be performed even two times 
faster (while keeping relatively similar error values or 
improving them). Also, the BDF of higher order can be 
applied without the risk of a requirement of additional 
computation time, since the obtained coefficients (denoted 
as p and q in the paper) are common to all degrees of 
freedom in a single time-step. 

Two additional analyses are planned for the future as far 
as the application of a time-step adaptation process is 
concerned: 

 – the analysis of the time-step choice basing on a 
more complicated scheme, e.g. one where a local 
discretization error is calculated by means of more 
composite formulae [10] (which could improve the 
efficiency of the presented strategies even more), 

 – an attempt to check the efficiency of other schemes 
in contrast to BDF which is commonly used in        
TD-FEM. 
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