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Low complexity algorithm for multiplying octonions 
 
 

Abstract. We propose an original algorithmic solution for multiplication of octonions. In previously published algorithms for computing the product of 
octonions the number of multiplications has been reduced by significantly increasing number of additions and shifts. A dignity of the proposed 
solutions is to reduce by 25% the number of multiplications needed to calculate the product of octonions compared with naive method. At the same 
time the number of additions is the same as in the naive way of calculations. During synthesis of the discussed algorithm we use a fact that octonion 
product may be represented as a matrix-vector product. Such representation provides a possibility to discover repeating elements in the matrix 
structure and to use specific properties of their mutual placement for reducing the number of real multiplications needed to calculate the octonion 
product.  
 
Streszczenie. W artykule przedstawiono szybki algorytm wyznaczania iloczynu oktonionów. Algorytm ten cechuje się zredukowaną o 25% liczbą 
operacji mnożenia w porównaniu do algorytmu naiwnego przy zachowaniu takiej samej liczby dodawań liczb rzeczywistych. (Zracjonalizowany 
algorytm mnożenia oktonionów).  
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Introduction 
 Currently arithmetic of hypercomplex numbers [1] is 
increasingly being used to enhance the effectiveness of the 
solution of problems in various areas of science and 
technology. Hypercomplex numerical systems are useful in 
electrodynamics [2], cryptography [3], digital signal and 
image processing [4, 5], machine graphics [6] and wireless 

data communications  [7]. It should be noted that in the 
implementation of numerical algorithms using hypercomplex 
representation of the data, the multiplication is the most 
time-consuming and labor-intensive. This is because the 
multiplication of two N  dimensional hypercomplex 

numbers requires 2N  real multiplications and )1( NN  

real additions. As can be seen, the complexity of this 
multiplication is proportional to the square of its dimension. 
This situation leads to an unacceptable increase in the 
duration of the operation, or to an increase in hardware 
costs in case of a VLSI implementation. Therefore, finding 
ways to reduce the complexity of hypercomplex 
multiplication is an important task. During the synthesis of 
efficient algorithms should keep in mind two aspects of 
design. In low-power digital design, optimization must be 
done at both algorithmic and logic-circuit levels. Multiplying 
of hypercomplex numbers involves a large number of real 
multiplications, which requires much more intensive 
hardware than real addition operations. Therefore in this 
case, the hypercomplex numbers product algorithm which 
contains as little as possible of real multiplications is 
preferable. On the other hand, when we are dealing with a 
CPU that contains embedded multipliers, minimizing the 
number of multiplications by substantially increasing the 
number of additions is irrational. This is because the delay 
of addition and multiplication in this case are roughly the 
same. In this case it is advisable to minimize the total 
number of arithmetic operations. We should note that first 
efficient hypercomplex number multiplication algorithms 
have been developed and published relatively long time 
ago. Papers [8, 9] describe octonion multiplication 
algorithms that require about twice less real number 
multiplications if compared to a direct (naïve) way of doing 
the calculation. The cost of such decreased number of real 
number multiplications is almost triple increase of addition 
and shift operations on real numbers. As a result, the total 
computational complexity was higher than in the naive 
method of computing. 

This paper aims to present an alternative version of 
octonion multiplication algorithm that requires performing 
much less addition on real numbers if compared to the 
algorithm [9] at the cost of insignificantly increased number 
of multiplications. Furthermore, the proposed algorithm is 
completely missing the shift operation (division or 
multiplication by a power of two.) In this case the total 
computational complexity of the suggested in this paper 
algorithm is less than that of the compared solutions. 
 
Formulation of the problem 
 Suppose we need to compute the product of two 
octonions: 
 
(1)    abc   
 
at that 
  

)( 76543210 KaJaIaEakajaiaaa  , 

 
 )( 76543210 KbJbIbEbkbjbibbb  , 

 
)( 76543210 KcJcIcEckcjciccc  , 

 
where }{ ia , }{ ib , }{ ic  7...,,1,0i , are real numbers and 

i , j , k , E , I , J , K - are imaginary units. 

Table 1 shows multiplication table of imaginary units of 
octonions [8]. 
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In vector-matrix form we can write: 
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(2)   18818   XBY , 

where 
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  ],,,,,,,[ 7654321018 yyyyyyyyY , 


  ],,,,,,,[ 7654321018 xxxxxxxxX , 
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The direct multiplication of the vector-matrix product in 
equation (2) requires 64 real multiplications and 56 real 
additions. Let us try to explore the possibility of reducing the 
computational complexity of the implementation of this 
expression. 
 
Development of the rationalized algorithm for 
calculating product of octonions 

Let us divide matrix into four blocks, each of which 
contains 8 rows and 2 columns: 
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Then we can write: 

 

(3)   )(
3

0

)(
12

)(
2818818 
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

n

nn XBXBY , 

 
where 


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In more acceptable form (3) can be rewritten as: 
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where 

841328 I1A   , 

 
and nm1  denotes the matrix whose elements are all units. 

NI  is an identity NN   matrix, in turn the symbols   and 

  indicate a Kronecker product and a direct sum of two 
matrices respectively. 

Figure 1, in order to facilitate an understanding of the 
main idea of the transformation, shows the data-flow 
diagram of the octonions product calculation in accordance 
with procedure given by (4). In this article all data-flow 
diagrams are oriented from left to right. Straight lines in the 
figures denote the operation of data transfer. In this paper 
we use solid lines without any arrows, so as not to clutter up 
the presented diagrams. At points where lines converge, 
the data are summarized. The rectangles and circles 
indicate the operation of multiplication by the matrix or 
variable inscribed inside an element. 

 

 
  

Figure 1. The graph-structural model for decomposing process of 
octonions product calculation into four subprocesses according to 
procedure (3) 
 

As can be seen from Figure 1, the computation process 
for multiplication of matrix 8Q  by vector 18X  can be 

implemented as four independent vector-matrix products 
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 XB . The results of these calculations are later be 

added together. It should be noted that the ordinary 
implementation of (4) does not provide any reduction in 
computational complexity. However, we will notice that the 
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show below, allows reducing the number of multiplications 
in the implementation of the partials vector-matrix products. 
The mentioned possibility of rationalization uses the 
following decomposition [10]: 
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As can be seen, each of such vector-matrix 
multiplications require only three multiplications and five 
additions. Using these singularities can offer a more cost-
effective way to obtain a set of partial vector-matrix 
products: 
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Generalized data-flow diagram in Figure 3 illustrates the 

organization of computing one (each) of the four vector-
matrix products, described by the expression 5. It is easy to 

see that the elements }{ is  of the matrices )(
12
nD  can be 

calculated using the following vector–matrix procedure: 
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Figure 2. The graph-structural model for computational process 

organization for calculating of column vector 
)(
112

n
Y  according to 

procedure (5) 

 
 
Figure3. The graph-structural model of computation process 
organization for vector 18S  elements calculating corresponding to 

procedure (6) 
 

Let us present the results of calculations of the partial 
vector-matrix products as one large vector 
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Then the procedure for calculating the elements of this 

vector can be represented in the following form. 
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If all the operations related to the implementation of 
computing the vector-matrix products in accordance to (5) 
and (7) are made, the result of multiplying two octonions can 
be obtained as follows (see Fig. 4): 
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denotes horizontal concatenation sign [11]. 
 

 
Figure 4. The graph-structural model for computational process 

organization for column vector 148Y  according to procedure (8) 

 
The number of real multiplications required using the 
proposed algorithm is 48. Thus using the proposed 
algorithm the number of real multiplications to implement 
the octonions product is reduced. The number of real 
additions required using our algorithm is 56. We observe 
that the proposed algorithm requires 16 multiplications less, 
than the direct computation of octonion product while 
maintaining the same number of additions. Nonetheless, 
the total number of arithmetic operations for proposed 

algorithm is approximately 15% less than that of the direct 
evaluation. Table 2 shows the estimates of the 
computational complexity of algorithms for multiplication of 
octonions. 
 
Table 2 Evaluation of the computational complexity of algorithms 

Solution 
Number of 

multiplications 
Number 
of adds 

Number 
of shifts 

Total 
arithmetical 
complexity 

Naïve (Eq.1) 64 56 — 120 
Algorithm [8] 32 88 16 136 
Algorithm [9] 30 94 32 156 
Proposed 48 56 — 104 

 
Conclusion 
 We presented a new algorithm for calculating the 
product of two octonions. The use of this algorithm reduces 
the computational complexity of multiplications of octonions. 
We state that this algorithm has better computational 
complexity than algorithm described in [9], even though is 
contains 18 multiplication more. Additionally, we note that 
the total number of arithmetic operations in our algorithm is 
less than the total number of operations in the compared 
algorithms. Therefore, the proposed algorithm is better than 
the algorithms [8, 9], even in terms of its software 
implementation on a conventional computer. In some cases 
the presented algorithm may appear to be more applicable 
and convenient from the implementation point of view.  
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