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Optimization of Special Inductor for Induction Pre-heating 
 
 

Abstract. The shape of a device for induction pre-heating of steel bodies is optimized in order to obtain its best performance. The goal is to 
maximize heat delivered to the place of the body that will be post-heated by laser beam, while heat produced elsewhere should be minimized. The 
direct problem (hard-coupled analysis of magnetic and temperature fields in the system) is solved by the finite element method. The inverse problem 
is solved using a special genetic algorithm with some elements of NSGA II. The methodology is illustrated by a typical example.   
 
Streszczenie. W artykule prezentowana jest optymalizacja kształtu urządzenia do indukowania grzania wstępnego stalowych obiektów w celu 
otrzymania najlepszego działania. Celem jest maksymalizacja ciepla dostarczanego do miejsca w obiekcie, które zostanie poddane grzaniu wiązką 
laserową, przy jednoczesnej minimalizacji ciepla dostarczanego wszędzie indziej. Zagadnienie proste (silnie sprzężona analiza pola magnetycznego 
i pola temperaturowego w systemie) rozwiązane zostało metodą elementów skończonych. Zagadnienie odwrotne rozwiązywane jest przy użyciu 
specjalnego algorytmu genetycznego z pewnymi elementami NSGA II. Metodyka została zilustrowana typowym przykładem. (Optymalizacja 
specjalnego induktora dla indukcji grzania wstępnego) 
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Introduction 

Presently, induction pre-heating of metals belongs to 
prospective technologies for their surfacing (such as laser 
welding or hardening), see, for example, [1–4]. Its purpose 
is to suppress unacceptably high temperature gradients in 
the surface layers of heated material irradiated later by a 
laser beam and avoid problems connected with subsequent 
excessive local mechanical strains and stresses of the 
thermal origin [5]. 

The considered pre-heater consists of a long copper 
inductor placed in a ferrite shell serving as a flux 
concentrator (ferrite is chosen because of its poor electric 
conductivity, low induced currents and Joule losses). The 
bottom part of the inductor is covered by a thin layer of 
thermal insulation in order to prevent the ferrite part from 
excessive heating by convection and radiation that would 
lead to deterioration of the ferrite parameters. The 
transverse cut through the inductor is depicted in Fig. 1. It 
moves at a prescribed velocity v  above the surface of the 
heated body, in the direction perpendicular to the picture 
plane. Thus, the material is first pre-heated by the inductor 
and only after it is heated by the laser beam. The variations 
of the temperature at the exposed spots are then not as fast 
as in the case of the single laser. 

 
Fig. 1. Basic arrangement of inductor 

  

The paper deals with the shape optimization of a 
cylindrical pre-heater whose goal is to secure its highest 
efficiency (which means the highest heat losses in the 
domain to be preheated and minimum heat losses 
elsewhere). Selected dimensions of the inductor are, 
however, subject to specific technological constraints. 

 
 

Formulation of the technical problem 
The goal of this paper is to optimize the inductor. The 

original dimensions of its cut (in mm) are indicated in Fig. 2. 
About a half of them are fixed, but several others denoted 
by letters , ,a g  can change within the prescribed ranges. 

The principal results of computations will be the 
optimized dimensions , ,a g  satisfying the requirements 

on the distribution of delivered heat. Other results are the 
profiles of magnetic and temperature fields in the system 
with the optimized inductor and also the most important 
profiles of the temperature. 

 

Fig. 2. Original dimensions of the inductor 
 

Mathematical model 
From the mathematical viewpoint, the task represents a 

non-linear inverse problem and particular steps of its 
solution are iterative computations of magnetic and 
temperature fields in the system and a multi-criteria 
optimization procedure for obtaining the best possible 
dimensions of the inductor. Its solution consists of the 
following iterative steps: 
1. Proposal of two objective functions quantifying the 
amounts of heat produced by induction in both domains of 
interest. 
2. Proposal of the first genetic population. 
3. Computation of both functionals for the individuals and 
creation of the Pareto diagram. 
4. If the Pareto front is unacceptably different from the 
same front obtained in the previous step, proposal of a new 
population and return to step 3. 
5. End of computations. 
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Details concerning the above steps are discussed in the 
following steps: 
1. The objective functions were the total heat losses 1Q  in 

the domain to be preheated (the region below the inductor, 
see Fig. 1) and total heat losses outside this domain 2Q . 

After optimization, 1Q  should reach its maximum while 2Q  

should reach its minimum. Determination of 1Q  and 2Q  will 

be shown later. 
2. The optimization process was based on using a specific 
in-house genetic algorithm. The first population consisted of 
vectors containing estimated values of dimensions that may 
vary.  
3. For every individual of the population we determine the 
values of 1Q  and 2Q . This step is rather long and first we 

will describe its individual parts. 
 Coupled solution of the magnetic and temperature 
fields in the system. This task is solved in the hard-coupled 
formulation in order to respect the time dependences of all 
important material parameters. The magnetic field is 
described by the equation for the magnetic vector potential 
A [6] 

(1)                   ext
1

curl curl
t




  
    

A
A J , 

where   is the magnetic permeability,   denotes the 

electric conductivity and extJ  stands for the vector of the 

external harmonic current density in the field coil. But 
solution to (1) is, in this particular case, practically 
unfeasible. The reason consists in a deep disproportion 
between the frequency f  (usually thousands Hz) of the 

field current extI  and time of heating Ht  (several seconds). 

That is why the model was somewhat simplified using the 
assumption that the magnetic field is harmonic. In such a 
case it can be described by the Helmholtz equation for the 
phasor A  of the magnetic vector potential A  [7] 

(2)                         extcurlcurl j    A A J .                  

Here,   denotes the angular frequency ( 2 f  ). But the 
magnetic permeability   of ferromagnetic parts is 
supposed not to be a constant everywhere; in every cell of 
the discretization mesh it is assigned to the local value of 
the magnetic flux density. Its computation is, in such a case, 
based on an appropriate iterative procedure. The conditions 
along the axis of the system and artificial boundary placed 
at a sufficient distance from it are of the Dirichlet type 
(  0A ).  

The temperature field T  in the clamping head is described 
by the heat transfer equation [8] 

(3)                       pdiv grad
T

T c w
t

  
   


,                   

where   is the thermal conductivity,   denotes the mass 

density and pc  stands for the specific heat (all of these 

parameters are generally temperature-dependent 
functions). Finally, symbol w  denotes the time average 
internal volumetric sources of heat that generally consist of 
the volumetric Joule losses Jw  (due to eddy currents) and 

magnetization losses mw . Thus, we can write 

(4)                                  J mw w w  ,                                  

where 

(5)                   
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eddy
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J
J A ,                  

while mw  are determined from the known measured loss 

dependence  m mw w B  for the material used (magnetic 

flux density B  in every element of the mesh is in this model 
also harmonic), or from the Steinmetz formula. In many 
cases, however, the magnetization losses are neglected as 
their value is very small with respect to the Joule losses. 
The boundary conditions take into account convection and 
radiation and may be written in the form 

(7)                     4 4S
S ext S r

T
T T C T T

n
  


    


. 

In the above equation,   denotes the coefficient of 
convective heat transfer, ST  stands for the surface 

temperature, extT  is the temperature of ambient medium 

and n  represents the direction of the outward normal to the 
surface S  of the body at a given point. Symbol   
expresses the Stefan--Boltzmann constant, C  is the 
coefficient of emissivity that may also include the 
configuration factor and influence of the multiple reflections 
and, finally, rT  stands for the temperature of surface to 

which heat from the system is radiated. 
 The functionals 1Q  and 2Q  are given by the 

relations 

(8)              H H

1 2
1 20 0

d d , d d
t t

V V
Q w V t Q w V t     ,           

where 1V  is the volume of the domain with the heat losses 

that are to be maximized, while 2V is the remaining volume 

of the body where the heat losses should be as low as 
possible. Both functionals are calculated for every individual 
from the population and drawn into a corresponding Pareto 
diagram. 

Evaluation of the Pareto front in the diagram. If the 
position of this front differs from the front obtained in the 
previous population by more than a prescribed tolerance, a 
new population is created, where the individuals are 
generated from the previous individuals by mutation and 
crossover. Thus, an iterative process is started up that is 
stopped at the moment when the above difference is 
acceptable. 

 

Numerical solution 
Both the field computations (in the monolithic 

formulation respecting all non-linearities and temperature 
dependences of the material parameters) and optimization 
were performed using our own code Agros2D. 

This application [9] cooperating with the library Hermes 
[10] is based on a fully adaptive higher-order finite element 
method [11]. Both these codes written in C++ are intended 
for the numerical solution of systems of generally non-linear 
and non-stationary second-order partial differential 
equations (PDEs) and their principal purpose is to model 
complex physical phenomena. They are freely distributable 
under the GNU General Public License. We can mention 
some of their unique features such as: 
 Solution of a system of PDEs may be carried out in both 
weakly coupled and hard-coupled formulations. In the latter 
case, the resultant numerical scheme is characterized by 
just one stiffness matrix. 
 There are three kinds of the adaptive algorithms 
implemented in the code. Except for more common h-
adaptivity and p-adaptivity, also the most sophisticated hp-
adaptivity may be used. The orders of the corresponding 
polynomials may reach 10. 
 Each of the mapped physical fields can be solved on a 
quite different mesh. For example, the temperature field is 
often highly smooth, so that it is not necessary to solve it on 
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an unnecessarily dense mesh (such as in case of the 
magnetic fields). As far as the task is non-stationary, the 
meshes evolve in time according to the results obtained in 
the previous step. 
 The codes can work with the hanging nodes of any 
level, which leads to a substantial reduction of the degrees 
of freedom (DOFs).  
 Besides the classic triangles, the codes are able to mix 
even quadrilateral and curved elements. The curved 
elements are very advantageous for accurate modelling 
curvilinear boundaries and interfaces. 
 The application also contains a powerful optimization 
module based on several kinds of genetic algorithms and 
conjugate gradients. 

 

Illustrative example 
The goal of the example is to illustrate the process of 

shape optimization of a typical inductor used for this 
purpose in one of the Czech companies. 

The dimensions of this inductor are shown in Fig. 1. Its 
body is made of ferrite of the following parameters: relative 
permeability r 40   and electric conductivity 1  S/m. 

The starting dimensions are: 10a  mm, 38b  mm, 
5c  mm, 19d  mm, 45e  mm, 4f  mm, and 1g  mm. 

The field current density 6
ext 10J  A/m2, and its frequency 

15f  kHz. 
The heated body is a massive plate made of carbon 

steel CSN 12040. Its nonlinear characteristics are depicted 
in the following figures. Figure 3 shows its saturation curve 
at the room temperature. 

 

Fig. 3. Saturation curve of steel CSN 12040 at the room 
temperature 
 

The magnetic permeability  r r ,B T   depends also 

on the temperature. This dependence is assumed to have a 
form      r r r, ,B T B T T    , where rT  is the room 

temperature and  T  is a suitable function of the 

temperature. We suppose that 
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symbol CT  denoting the Curie temperature (for steel CSN 

12040 its value is approximately 760 °C). 
For the sane steel, Fig. 4 shows the temperature 

dependence of its electric conductivity, Fig. 5. depicts an 

analogous dependence of its thermal conductivity and Fig. 
6 contains the graph of its specific heat capacity. 

The optimization process has the following technological 
constraints: 5 20a   mm, 0 39b  mm, 5 20c    

mm, 5 20d   mm, 20 60e  mm, 1 10f   mm, and 

1 10g   mm. 

The velocity of the inductor 3v  mm/s, the initial 
temperature 0 20T  °C, and the generalized coefficient of 

the heat convection (respecting also the radiation) 
15  W/m2K. The computations are performed for the 

steady state of the process; this means that the 
temperature field does not explicitly change with time, but 
only with the position of the inductor. 

   

Fig. 4. Electric conductivity of steel CSN 12040 vs temperature 

 
Fig. 5. Thermal conductivity of steel CSN 12040 vs temperature 

  
Fig. 6. Specific heat capacity of steel CSN 12040 vs temperature 

In the optimization process, every generation was 
formed by 50 individuals and during one generation just 
about one third of the original population was preserved, 
while another third were generated by crossover. The 
ancestors for the crossover were selected according to their 
position with respect to the Pareto front. The remaining third 
of the population were obtained by mutation. In all 
generations, the coupled problem of induction heating was 
solved and both objective functions were evaluated. The 
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process was finished after 55 generations, when the Pareto 
front practically stopped changing.  

Figure 7 shows the evolution of the optimization process 
with the final shape of the Pareto front (in the next iterations 
the Pareto front did not change any longer). 

After a detailed evaluation of the results we selected the 
optimized dimensions of the inductor: 5a  mm, 30b  mm, 

10c  mm, 10d  mm, 41e  mm 4.5f  mm, and 7g   
mm. For comparison, the original and optimized shapes of 
the inductor (together with the distribution of magnetic flux 
density) are in Fig. 8. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 7. Evolution of optimization process and final Pareto front after 
55 generations marked by larger grey circles (left) and distribution 
of the surface temperatures along the longitudinal axis of the 
domain with required maximum heat losses (right) 
 

 
Fig. 8. Original (up) and optimized (bottom) shapes of the inductor, 
together with the distribution of magnetic flux density 

   

Fig. 9. Surface temperature along the longitudinal axis of the 
domain with required heat losses (see Fig. 1) 

A very important result is the profile of the surface 
temperature along the longitudinal axis of the domain (see 
Fig. 1) with the required maximized heat losses. These 
profiles are depicted in Fig. 9 and it is obvious that in the 
case of the optimized inductor the surface temperature is 
more than two times higher. 

Conclusion 
The paper presents the shape optimization of a pre-

heating inductor with the aim to maximize the heat losses in 
a specific domain of the heated body, while in its exterior 
the same losses are minimized. From the mathematical 
viewpoint, the task represents an inverse coupled problem. 
The coupled problem of induction heating is solved by our 
own code in the monolithic formulation, the optimization 
being carried out using an in-house genetic algorithm 
developed by the authors.  
Next work in the field will be aimed at the modelling of 
cooperation of the optimized pre-heater and laser beam 
during the process of the combined heating and 
experimental verification of the results. Attention will also be 
paid to the acceleration of the computational algorithms. 
Last but at least, the influence of frequency on the shape 
optimization will also be investigated. 
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