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Abstract. The paper presents a study of the applicability of approximate Green’s functions in frequency domain analysis of a horizontal wire 
conductor above or buried in homogeneous lossy soil. The authors analyze the effects of two distinct approximate formulations of Sommerfeld 
integrals based on the use of quasi-static image theory and complex image theory. This analysis is focused on the current distribution with respect to 
conductor length and position, soil parameters and frequency range.  
 
Streszczenie. W artykule przedstawiono badania nad zastosowaniem przybliżonych funkcji Greena  w analizie częstotliwościowej poziomych 
przewodów usytuowanych nad lub zakopanych w jednorodnej stratnej ziemi. Autorzy przeanalizowali efekty dwóch przybliżonych sformułowań całek 
Sommerfelda w oparciu o kwasistatyczną teorię odbić i kompleksową teorię odbić. Skupiono się na analizie rozkładu prądu z odniesieniem do 
długości przewodnika i jego pozycji, parametrów gleby i zakresu częstotliwości. (Stosowalność przybliżonych funkcji Greena w MPIE modelach  
poziomych przewodów w stratnej glebie) 
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Introduction 

The electromagnetic analysis of horizontal wire-
conductors buried in finitely conductive earth is often part of 
complex electromagnetic compatibility studies. Different 
strategies for modelling have been developed, ranging from 
transmission line theory to exact approach based on 
electromagnetic theory [1]. The last one is based on the 
electromagnetic theory and uses rigorous Sommerfeld 
formulation for the electric field due to elementary Hertz 
dipoles sources and thus represents the most accurate 
solution of the problem. This model involves numerical 
integration of appropriate Green’s functions that take into 
account the influence of the air/soil half-spaces by rigorous 
Sommerfeld formulation [2]. However, such rigorous 
treatment in the electromagnetic model is very demanding 
in terms of both computer memory and time. For that 
reason approximate formulations have been intensively 
studied [3]–[8].  

In this paper the authors investigate the effects of the 
proposed quasi-static approximations of the Green’s 
functions related to the given problem. This study is based 
on the comparison of the current distribution along a centre 
fed wire conductor buried in homogeneous lossy soil. The 
calculations are done in wide frequency range from 0.001 to 
10 MHz. A detailed parametric analysis clearly illustrates 
the validity domain of the proposed approximations with 
respect to their practical applications. The results will be 
compared by NEC reflection coefficient method [10].  

 

Mathematical model 
We consider single centre fed horizontal x-directed wire 

conductor of length L located above or buried in 
homogeneous lossy soil, as shown in Fig. 1.  

 

 

Fig.1. A centre fed horizontal conductor in homogeneous lossy soil 
 

The central fed energization is assumed by a harmonic 
voltage generator VS in frequency range from 1 kHz to 
10 MHz, the time variation ejt is assumed and suppressed. 

The air (medium “0”) occupies the upper half-space (z > 0), 
whereas the soil (medium “1”) occupies the lower half-
space (z < 0). Both mediums are characterized by 
permeability μ0, air permittivity 0 and soil permittivity 
1 = 0r. The conductivity of the soil is .  

 

Electromagnetic model 
To solve current distribution we use mathematical model 

that is based on full-wave theory (denoted as EM model) in 
MPIE formulation for the electric field Ex tangential to the 
conductor [6] due to filament of current ( )I x   and charge 

( )q x   sources at the conductor axis: 

(1)  ( ) ( )xx
x A VE j G I x dx G q x dx

x
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where: xx
AG  and GV  are corresponding Green’s functions. 

The rigorous EM model involves exact formulations for 
the Green’s functions of the vector and scalar potentials. 
Here, xx

AG  is the x-component of the dyadic Green’s 

function for the magnetic vector potential due to x-directed 
horizontal electric dipole HED in conductive half space. 
Respectively, GV is the scalar potential Green’s function due 
to one charge q associated to the HED. 
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where: Gdir and Gimg correspond respectively to the so called 
direct and image term: 
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where Rdir and Rimg are the distances between the dipole 
and the observation point and the image of the dipole and 
the observation point. The terms 0S   in (2) and (3) are 

Sommerfeld-type integrals that we solve by direct numerical 
integration in a similar way to the approach used by Burke 
et al. [6] 
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The expressions for the vector and scalar spectral 
domain Green’s functions relative to this problem may be 
found in [12, 13]. The involve Fresnel reflection coefficients 
RTE and RTM: 
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Approximate models 
The quasi-static approximations of the Green’s functions 

xx
AG  and GV are based on the exponential approximation of 

the spectral expressions that arise in 0S   when frequency 

tends to zero. The spatial domain Green’s functions are 
later obtained in closed form in terms of Sommerfeld 
identity. In comparison to the classical quasi-static 
approach, this image representation involves the 
propagation effect [5]. 

Model A: When 0 the most simple approximation of 
(6) is obtained by using quasi-static image theory [5]. This 
approach is based on the assumption u1 ~ u0 since 2 2

nk   

for n = 0, 1 that leads to approximation of the Fresnel 
reflection coefficients: 
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and further leads to the following set of approximate 
expressions of the Green’s functions: 
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Model B: The second approximation valid when 0 is 
based on is based on the assumption u1 ~ , u1  u0 and 
Wait-Spies [8] and Bannister’s air-earth complex image 
theory [9]: 
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where 0 12 / ( )d j j     is complex depth. The 

constants a and b in (11) get values of 0.4 and 0.96 [3].  
This approach leads to the following set of approximate 

Green’s functions: 
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Numerical results 

To determine the domain of applicability of proposed 
approximate expressions for the Green’s functions we 
compare the current along a horizontal conductor in 
homogeneous lossy soil. The studied cases are: L = 10-m 
(short conductor) and L = 100-m (long conductor), with 
radius a = 0.007 m positioned at depth D: 0.5 m, 1 m and 
1.5 m. Three values for the soil conductivity  are assumed:  
0.001 S/m, 0.01 S/m and 0.1 S/m. The relative permittivity 
of the soil is fixed at r = 10. The excitation is central feed by 
a harmonic voltage source of 1 V in frequency range from 1 
kHz to 10 MHz.  

In order to obtain the accuracy, we calculate the current 
rms error [11] by accumulating all differences in the current 
distribution along the conductor: 
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Here, EMiI  and approxiI  are phasors of the current 

samples along the wire computed by the EM model and by 
using the approximate models A and B, and N is number of 
samples.  

Fig. 2 shows respectively the current magnitude and 
phase calculated by using rigorous electromagnetic model, 
and the two approximate models A and B. The results are 
obtained for f = 1 MHz,  = 0.01 S/m, D = 1m. 

Fig. 3 shows the current distribution error obtained when 
using Model A and Model B with respect to EM model. The 
studied cases are: short conductor (L = 10-m) and long 
conductor (L = 100-m), buried in lossy soil with depth D = 1 
m. The soil conductivity 1 is 0.01 S/m with 1 = 100. The 
excitation is central feed by a harmonic voltage source of 
1 V in frequency range from 1 kHz to 10 MHz. 

The rms error (14) given in Fig. 3 shows that the 
accuracy of model A and model B is frequency dependent. 
The maximal rms error is around 5-6% calculated at the 
resonant frequency. However, we may observe that the 
application of the reflection coefficient approach with NEC 
code (denoted by NEC-rc) introduces much higher error 
applied for long conductors. 

Fig. 4 shows the accuracy of the approximate models 
with respect to the soil conductivity. As may be observed, 
when the soil conductivity is low (0.001 S/m) the �rms error 
tends to increase significantly, particularly at higher 
frequencies above 1 MHz. In case of very large value of the 
soil conductivity (0.1 S/m) the accuracy of all models is 
much better, i.e. the rms error is within 5%. 
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Fig.2. Current magnitude and phase along a 10-m conductor (left) and 100-m conductor (right) at 1 MHz obtained by different models 
(D = 1 m,  = 0.01 S/m) 

 

    

Fig.3. Current rms error obtained by approximate models A and B: conductor length L = 10-m, depth D = 1 m,  = 0.01 S/m (left), and 
L = 100-m, D = 1 m,  = 0.01 S/m (right) 

 

    

Fig.4. Influence of the conductor depth on the rms error obtained for D = 0.5 m and D = 1.5 m (L = 10-m - left) and (L = 10-m - right) 
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Fig.5. Influence of the soil conductivity on the rms error obtained for  = 0.001 S/m and  = 0.1 S/m (L = 10-m - left) and (L = 10-m - right) 
 
 
Conclusion 

In the paper, the authors derive two approximate models 
of a horizontal wire conductor buried in homogeneous lossy 
soil. The two models are based on quasi-static image and 
complex image theory applied to the Green’s functions 
related to this problem. The results of a detailed wide 
frequency range numerical analysis of a 10-m  (short) and a 
100-m (long) wire by using various soil parameters may be 
summarized in: 

• The approximate models (A and B) based on 
image theory introduce differences when calculating the 
current distribution which is dependent on the frequency. 
The maximal errors are obtained at the resonant frequency. 

• Model A, based on the quasi-static image theory 
represents generally good approximation with respect to the 
rigorous EM model in all studied frequency range. However, 
this model shows limitations due to higher rms error when in 
cases of low conductivity of the soil and when the conductor 
is located close to the soil surface. Similarly as NEC 
reflection coefficient model, the accuracy of this model 
shows significant dependence on the resonant frequency. 

• Model B, based on the quasi-static complex image 
theory represents very good approximation with respect to 
the rigorous EM model in wide frequency range. The high 
accuracy of this model with max 5% rms error is confirmed 
for all studied cases. The only exception concerns the case 
of low conductive soil (here  = 0.001 S/m) when the rms 
error exceeds 5% at very high frequencies, above few MHz. 
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