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Reduced equations of magnetic hysteresis generated  
by quasi-elastic rotations of domains 

 
 

Abstract. Magnetization processes are described by quasi-elastic rotations of domains. Thanks to this, basic curves of magnetic hysteresis are 
approximated by the reduced equation. Its extended form takes into account dependence of magnetization on frequency and temperature. 
 
Streszczenie. Procesy magnesowania opisano poprzez quasi-sprężyste obroty domen.  Dzięki temu podstawowe krzywe histerezy magnetycznej 
aproksymowano równaniem zredukowanym. Jego rozszerzona postać uwzględnia zależność namagnesowania od częstości i temperatury. 
(Procesy magnesowania opisane poprzez quasi-sprężyste obroty domen) 
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Introduction 

Mathematical description of magnetic hysteresis is 
necessary in many problems. Magnetic materials are used 
in transformers, motors, generators and other devices, 
while hysteresis effects occur in many branches of physics, 
medicine, or economy. Analysis of magnetic phenomena 
proceeds in two stages. Quantum theory explains the 
spontaneous formation of domains, within which all atomic 
magnetic moments are arranged unidirectional, and 
determines general anhysteretic relation between 
magnetization and field in the form of Brillouin function [1]. 
Then, different models explain hysteresis effects. The most 
known of them are the Jiles-Atherton model [2] based on 
physical assumptions and Preisach-type models [3] using 
triangular diagrams of hysteresis. Simpler models 
approximate hysteresis curves by functions producing their 
S-shaped equivalents [4,5]. All these models use several 
fitting parameters and in general lead to numerical solutions 
of related electrical circuits. Presented description enables 
analytical determination of basic hysteresis curves and 
circuit characteristics without referring to specific material 
parameters. Extended forms of the model describe 
frequency and temperature effects. 
 

 
Fig.1. Simplified model of reversible and irreversible rotations 
 
Initial magnetization curve 

Magnetic material consists of randomly oriented 
domains. In an external field H the domains aligned to field 
grow at the expense of others and turn in the direction of 
field, until all of them are aligned to it and saturation 
magnetization Ms is achieved. The real set of domains we 
replace by an idealized system of two groups of domains, 
and the process of magnetization will be reduced to 
rotations. The first group consists of N1 domains with 
magnetic moments pm1, the second group consists of N2 

domains with magnetic moments pm2. Both groups are 
arranged into pairs perpendicular to magnetic induction B0 
= 0H, like in Fig.1.  

The field turns each domain until the moment of 
magnetic forces is compensated by the moment of internal 
elastic forces. For the first group we assume constant 
internal forces F1, which leads to relation 

(1)        sin2cos 1101 FrHpm   

Hence we get  = atan(H/a), where  a = 2r1F1/(0pm1). 
The considered pair of domains generates in the field 
direction the resultant moment  pH = 2pm1sin(atan(H/a)), and 
all N1/2  pairs of these domains give magnetic moment 
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For the second group we assume internal forces F2 
decreasing with the rise of field due to weakening ties with 
neighboring elements. We describe this effect by the 
saturation function (3) using variable  x = H/b 
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where b = 4r2F0 /(0pm2). If Mb = N2pm2, the resultant 
magnetization of all N2/2 pairs of these domains is 
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Thus, the total initial magnetization will be 
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where  Ma+ Mb = Ms , and  a , b determine the rate of 
approach to saturation for reversible (2) and irreversible (5) 
processes. This curve is presented by the solid line in Fig. 
2. 
 

Quasi-static loops 
If magnetic field changes cyclically from the maximum 

value Hm to minimum value –Hm, the corresponding 
changes in orientation of domains from the state achieved 
in maximum point (Hm, M(Hm)) run initially slower (dashed-
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dotted line in Fig. 2) than in initial process, leaving at  H = 0 
remanent magnetization Mr. It is reduced to zero when the 
field assumes negative value -Hc. Then, the sample 
magnetizes to the minimum value –Mm = M(-Hm) and 
returns to the highest point along a lower, symmetrical 
branch of the loop (dotted line in Fig.2).  

 

 
Fig.2. Initial curve, anhysteretic curve, and symmetrical loop  
 

Suppose that changes of magnetization from the highest 
point of small loops run like changes from the initial state. It 
means that the expression (Hm - H) varies linear in the first 
component of (6) and quadratic in the second component. 
This assumption generates an upper branch of hysteresis 
loop 
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The lower branch is determined by the central symmetry 
condition  M'(H,Hm) = - M(-H,Hm). 

Relation (7) describes small hysteresis loops of width 
Hm. When magnetization approaches saturation, the width 
of quasi-static loops approaches certain maximum value. 
Assuming that it is equal to b, we describe this change by 
the saturation function S(Hm/b), and write (7) as the sum of 
central anhysteretic curve and deviation from it 
(8) 
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where the signs  specify upper or lower branch of the loop. 
 
Reduced form of quasi-static loops 

For not too high field amplitudes, the first component of 
(8) may be neglected, because usually a>>b. By introducing 
normalized expressions 

    bHx  , bMMy  , bHx mm  ,  bmm MMy     

we eliminate from (8) material parameters and get the re-
duced equation of symmetrical loops and related curves 
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where   = 1, 0. Central ( = 0) and initial curve (joining the 
tips of symmetrical loops, xm= |x|) are given by  

 (10)                xxSSxxy mmc 2)(,       

(11)                     xxSSxyi 2  

 
Fig.3. Measured [6] and model (dashed) hysteresis loops of steel  
(cut angle = /4, Mb = 0.93 MA/m , b = 57 A/m) 
 

Hysteresis loops may be also generated by cyclic 
changes of voltage and related to it magnetization. In this 
model we avoid related to this numerical calculations, 
because (9)-(11) may be written in inverse form, directly 
determining the dependence of reduced field on reduced 
magnetization 
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Experimental [6] and model (9), (14) reduced hysteresis 
loops of laminated steel are compared in Figs.3, 4. 
 

 
Fig.4. Inverse measured [6] and model (dashed) hysteresis loops of 
steel  (cut angle = /2, Mb = 0.993 MA/m, b = 88.4 A/m) 

 

Time dependence of reduced field and magnetization 
Let us consider a series circuit consisting of the source 

of supply of low angular velocity  = 2 /T, the ohmic 
resistance R and N turns of wire wound on a closed toroidal 
ferromagnetic core of length l and cross-section area A. For 
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sinusoidal current supply I(t) = Imsin(t) we have 
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and for sinusoidal voltage supply U(t) = Umsin(t+/2)  
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where  Im, Um are the amplitudes of current and voltage. in 
these cases equations (9), (14) change into analytical 
functions of time (with  = -sign[cos(t)]), and the numerical 
analysis of circuits becomes redundant.  

Time dependence form of (9) for y at sinusoidal supply 
of x is shown in Fig.5, while the time dependence form of 
(14) for x at sinusoidal supply of y is plotted in Fig.6. In 
circuits with ferromagnetic cores these diagrams 
correspond to the time dependence of magnetic induction at 
sinusoidal supply of current, and time dependence of field 
and current at sinusoidal supply of voltage. Reduced 
magnetization y(t) in Fig.6 is delayed in phase by /2 
relative to u(t)= U(t)/Um). The dashed curve corresponds to 
the dynamic loop (18). 

 

 
Fig.5. Time dependence of y (solid) at sinusoidal supply of x 
(dotted) 
 

 
Fig.6. Time dependence of x (solid) at sinusoidal supply of y 
(dotted); dashed–dependence for a dynamic loop ( f = 0.16) 

 

Reversal curves  
If a steady supply producing field xs is added to the 

sinusoidal supply generating loops of amplitude xm, then the 
hysteresis loop is limited by two extreme fields x0 = xm+xs 
and x1 = xmxs. The upper branch of the loop is given by (9) 
with xm replaced by x0. It abruptly ends at field x1 and 
related magnetization y(x1,x0,) resulting from (9). From this 
point magnetization returns to the highest point (x0,yi(x0)) in 
the same way as symmetrical branches (8) from their 
extreme points.  

Sometimes, the curve returning from the reversal point 
does not achieve the top of symmetrical loop, but ends at 

the lower point (x2, y1(x2,x0,x1)). The return from this second 
order reversal point to the first reversal point will be 
approximated in the same way as previously. This method 
may be applied to further similar processes ending at the 
successive reversal fields x3, x4, ... , xn, which leads to 
relation 

 (17) 

   

       
















 








2
0

0
22

21
2

10
2
0

0

0
10

2...2
2

1
...,,,

x

xxxxxxxxx
xSx

xS
Sxxxxy

n

nn

 

 Some model reversal curves are plotted in Fig. 7. 
 

 
Fig.7. Reversal curves (17) 

 
Dynamic loops 

For not too high amplitude and frequency, the reduced 
equations may be extended to dynamic loops characterized 
by the increase of the width of loops with the rise of 
frequency  f and magnetization amplitude [5]. This effect 
may be achieved by the addition of a simple expression to 
(14) 
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For soft ferromagnetic materials:   0d
2Mb/b, where d, 

 – thickness and conductivity of sheets. Comparison of 
model and measured dynamic loops of transformer steel is 
shown in Fig.8. For transition to reduced curves were 
applied parameters Mb = 0.796 MA/m, b = 179 A/m,  = 
0.0016. 

 

Fig.8. Measured (solid) and model (dashed) dynamic loops of steel  
(thinner curves – 50 Hz, thicker curves – 200 Hz) 
 

The area (19) inside the loop determines reduced 
energy loss w  in unit volume of a core per one cycle of 
hysteresis. Real losses are  W = 0Mbbw. 
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Fig.9. Reduced hysteresis loss (solid –  f = 0, dashed -  f = 0.04, 
dotted -  f = 0.16) 

 
Dependence of magnetization on temperature 

Reduced equations can be extended to larger loops by 
addition of reversible component MaS(H/a). Suppose, that 
parameters Ma, a, Mb change with the relative temperature 
 =T/Tc (Tc - Curie point) like function F()=sqrt(1- n), while 
parameter b varies like F()/. These assumptions are 
simpler than relations used in [7], [8], [9] and enable more 
accurate approximation of experimental magnetization 
curves (Fig.10) in a wide range of temperature. 
 

 

Fig.10. Temperature dependence of initial magnetization ( thicker –
measured [10], thinner – model (20) ) 

 
Let use introduce to (9) the reversible component and 

assumed dependencies of model parameters on 
temperature. In this way we get relations 
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 where      
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Fig.11. Computed quasi-static and dynamic loops (22) of iron (solid 
- T1 = 23oC; dashed - T3 = 642oC , dotted – T5 = 781oC , dashed-
dotted - T1 = 23oC,  f = 1) 
 
The results for parameters  
       Mb = 0.804 MA/m , b = 94.8 A/m , Ma = 0.557 MA/m , 
           a = 1005 A/m , n = 9.97  , Tc = 1061 K , 
optimized for measured curves [10], are shown in Figs.10, 
11.  
 
Conclusion 

Presented model properly describes basic curves of 
magnetic hysteresis. Reduced form of equations enables 
their application to other similarly running processes. 
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