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Powers in three-phase systems with neutral conductor 
at sinusoidal voltages and currents 

 

Abstract. Most of residential and industrial distribution systems as well as traction and distribution systems in commercial buildings are three-phase 
systems with a neutral conductor, denoted in this paper as 3pN systems. When loads are unbalanced then such systems cannot be now described 
as a whole in power terms because of a controversy regarding definition of the apparent, even if voltages and currents are sinusoidal. Consequently, 
it is not clear now how the apparent power and the power factor are affected by the load imbalance. The paper suggests definition of the apparent 
power for such systems and the power equation. It is based on the supply current decomposition into the Currents’ Physical Components (CPC). 
The paper introduces two new powers that specify the effect of the load imbalance upon the apparent power of three-phase systems with a neutral 
conductor at sinusoidal voltages and currents. 

Streszczenie. Sieci rozdzielcze w dzielnicach mieszkaniowych, zakładach przemysłowych, budynkach handlowych czy publicznych, a także sieci 
trakcyjne, są budowane zwykle jako sieci trójfazowe z przewodem zerowym. Oznaczane są one w tym artykule jako sieci 3pN. Wtedy, gdy odbiorniki 
zasilane z sieci 3pN nie są zrównoważone, nie można obecnie napisać równania mocy takich obwodów, trakto-wanych jako całość, a jedynie 
równania mocy poszczególnych faz. Przyczyną tego jest kontrowersja wokół definicji mocy pozornej w takich obwodach. Przedmiotem niniejszego 
artykułu jest propozycja definicji mocy pozornej, oraz równanie mocy w obwodach trójfazowych z przewodem zerowym i sinusoidalnymi przebiegami 
prądu i napięcia. Równanie to wynika z rozkładu prądu zasilania w takich obwodach na Składowe Fizyczne (ang.: CPC). (Moce w obwodach 
trójfazowych z przwodem zerowym i sinusoidalnymi przebiegami prądu i napięcia) 
 
Keywords: Currents’ Physical Components, CPC, power definitions, imbalanced systems, unbalanced power.  
Słowa kluczowe: Składowe Fizyczne Prądu, CPC, definicje mocy, systemy niezrównoważone, moc niezrównoważenia.  
 

 
Introduction  

Loads in residential distribution systems, commercial 
buildings and industrial plants are a mixture of pure balan-
ced three-phase loads such as three-phase motors or recti-
fiers, as well as single phase loads, as it is shown in Fig. 1. 
Because of this, power grids of such customers are built as 
three-phase systems with a neutral conductor. They will be 
denoted in this paper as 3pN grids. Maybe, the most dis-
tincive example of these sorts of grids is three-phase trac-
tion grid, since the driving carts can be supplied only from a 
single traction line, while rails form a neutral conductor.  

 

Fig. 1. Three-phase load with neutral conductor. 

Although a substantial amount of electric energy is con-
sumed in 3pN grids, we cannot describe them now in power 
terms as a whole, but only phase-by-phase, even if the vol-
tages and currents are sinusoidal. This is because the 
power equation of three-phase systems 

(1)                                       S2 = P2 + Q2 

is valid only on the condition that the load is balanced.  
 It was known, as reported in Ref. [1] by Lyon in 1920, 
almost from the beginning of three-phase system develop-
ment, that the load imbalance degrades the power factor, 
= P/S, thus it increases the apparent power of the source.  
 Fundamentals for studies of unbalanced systems were 
provided in 1918, with the development of the concept of 
symmetrical components by Fortescue [2], and a frame for 
these studies was established by AIEE [3] as well as Curtis 
and Silsbee [4] who defined basic power quantities. 

 The load imbalance and consequently, the supply cur-
rent asymmetry is a property which is substantially different 
from a phase-shift between the voltage and current, which 
results in the reactive power Q.  
 Unfortunately, all attempts aimed at formulating a power 
equation of unbalanced three-phase systems, with a variety 
of different approaches, as presented in major publications 
on this subject in Refs. [5-10], provided the power equation 
only in the form of equation (1). Ref. [11] is a good source 
for studying various approaches to defining powers in unba-
lanced systems. 
 When a power equation is written in the form of eqn. (1) 
then effects of the phase-shift and the load imbalance upon 
apparent power S are not separated. Observe that the term 
denoted by “Q” in this equation is usually interpreted as the 
reactive power, but it has a non-zero value even for a purely 
resistive unbalanced load. Also it cannot be measured by a 
reactive power meter connected at terminals of such a load.  
 This is a major deficiency of the power equation in the 
form of eqn. (1), especially since it occurs even if voltages 
and currents are sinusoidal. Therefore, it is hard to imagine, 
that such equation could be a starting point for developing a 
power equation when these quantities are nonsinusoidal.  
 All that was said above applies to three-phase, three-
wire systems, but such systems are a sub-set of three-
phase systems with a neutral conductor.  
 The lack of a right definition of the apparent power for 
three-phase systems is one of the main reasons of eqn. (1) 
deficiency. According to Refs. [3, 4, 12], this definition can 
have one two following forms, namely 

(2)                           S = SA = URIR + USIS + UTIT 

known as an arithmetic apparent power, or  

(3)                             S = G
2 2

 = + S P Q  

known as a geometrical apparent power.  
The issue of selecting a right definition of the apparent 

power S for three-phase, three-wire systems was solved in 
Ref. [13]. This selection was based on the answer to the 
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following question asked in that reference: “which apparent 
power definition provides the power factor  = P/S value that 
indeed characterizes the energy loss at its delivery?”. 

That study revealed that not definitions (2) and (3), but 
the definition suggested by Buchholz in Ref. [14]  

(4)               B R S T R S T
2 2 2 2 2 2

 = + + + +S S U U U I I I  

is the right definition of the apparent power in three-wire 
systems with sinusoidal voltages and currents. The arithme-
tic and geometric definitions of the apparent power provide 
the power factor values which do not specify the energy 
loss at its delivery in unbalanced systems correctly.  
 The selection of the definition of the apparent power, 
presented in Ref. [13], applies only to three-phase systems 
without a neutral conductor (3p systems), however. Since 
such systems are a sub-set of the set of 3pN systems, a 
definition that is not right in 3p systems cannot be right in 
3pN systems. Consequently, the apparent power in 3pN 
unbalanced systems cannot be calculated according to the 
arithmetic or geometric definitions. Only definition (4) can 
be regarded as a “starting point” for its generalization for 
3pN systems. Having a right definition of the apparent pow-
er, power properties of 3pN systems with unbalanced loads 
can be investigated and a right power equation of such 
systems can be developed. This is the subject of this paper. 

Current three-phase rms value 
Single-phase loads are supplied in 3pN systems with 

line-to-neutral voltages uR, uS and uT. Three-phase equip-
ment is supplied with line-to-line voltages uRS, uST and uTR. 
The star point of three-phase equipment may or may not be 
connected to the neutral conductor. 

Unlike 3p systems, where the sum of line currents is 
equal to zero, in 3pN systems 

                            R S T N( ) + ( ) + ( ) ( ).i t i t i t i t  

 Consequently, some definitions of power related quanti-
ties in 3pN systems could differ from comparable definitions 
for 3p systems. 
 Three-phase transmission equipment in three-wire sys-
tems is built to keep mutual symmetry of individual lines as 
much as possible. Therefore, it can be assumed that their 
impedances are mutually equal. In the case of equipment in 
systems with a neutral conductor, its impedance could be 
substantially different from the line impedance, however. 

 

Fig. 2. (a) Three-phase four-wire device and (b) single-phase 
device, equivalent as to the active power. 
 Assuming that phase and neutral conductor resistances 
of a three-phase device, shown in Fig. 2, are, respectively, 
RS and RN, the active power of this device is equal to 

R S T N N
2 2 2 2

s= (|| || || || || || ) + || ||P R i i i R i   
or 

3 N N
2 2

s= || || + || ||P R R i .i  

Symbol i in this formula denotes a three-phase vector of 
line currents iR, iS and iT. i.e., i = [iR, iS, iT]T. The first term on 

the right side specifies the active power of the single-phase 
device with resistance Rs and line current I equal to the 
three-phase rms value, i.e., I = ||i||3 

3
2

s= || ||P Ri . 

Devices in Fig. 2a and b are mutually equivalent as to the 
active power P, if  

4 3 N N
2 2 2

s s|| || = || || + || ||R R i Ri i  

hence 

(5)                     N N
3

3

2
4

s

|| ||
|| || = || || 1+ ( )

|| ||

R i

R
i i

i
. 

This is the three-phase rms value of a three-phase current 
of a four-wire device. Formula (5) takes into account a fact 
that resistance RN of the neutral conductor can differ from 
phase resistances Rs. This difference can be particularly 
visible for three-phase transformers. According to formula 
(5) the current three-phase rms value ||i||4 cannot be calcu-
lated without information on the device resistance asym-
metry, meaning the ratio RN/Rs. 

If this would not cause any confusion, this value will be 
denoted in this paper without index “4”, meaning  

||i||
df
 ||i||4. 

Formula (5) was developed without any restrictions as 
to the current waveform. Therefore, it applies not only to 
systems with sinusoidal currents, but also to systems with 
any nonsinusoidal, but periodic currents.  

Observe, that when there is not dissipation of energy 
associated with the presence of a neutral conductor current, 
meaning ||iN|| = 0 or RN = 0, then  

(6)                               ||i||4 = ||i||3 = ||i||. 

Illustration 1. Let us calculate the supply current rms 
value ||i||4 of a 3pN device shown in Fig. 3, if the line cur-
rents are 

R

S

T

1
0

1

50 2 sin  A

50 2 sin( 120 ) A
0

i t

i t
i






 


 

assuming that Rs = Re{Zs} = 2  and RN = 0.2 . 

  

Fig. 3. Example of 3pN device with asymmetrical currents. 

The neutral current is equal to  

R S T
0

N 150 2 sin( 60 )A.i i i i t      

The rms value ||i||3 is equal to  

3 R S T
2 2 2 2 2|| || || || +|| || +|| || 50 50 70 7 Ai i i .   i  

hence, according to formula (5), the three-phase rms value 
of the load current is 

N N
3

3

2 2
4

s

|| || 0 2 50|| || = || || 1+ ( ) 70 7 1+ ( ) 72 4 A.
|| || 2 70 7

R i .
. .

R .
 i i

i
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Thus, resistance of the neutral conductor contributes to the 
current three-phase rms value increase. 

Voltages in 3pN systems  
Single-phase loads in 3pN systems are supplied with 

line-to-neutral voltages. Line voltages in three-phase sys-
tems are referenced sometimes, or even measured with 
respect to different reference points, however. These could 
be a ground or artificial zero, as shown in Fig. 4. The choice 
of the reference point does not affect, of course, the energy 
flow in the system. Nonetheless, this choice of reference 
point can cause some confusion. To avoid it, this point 
should be distinctively specified and information on the 
reference even included in the voltage symbol as it was 
done in Fig. 4.  

 

Fig. 4. Voltages in 3pN system. 

It is assumed that internal voltages eR, eS and eT, of the 
supply distribution system are mutually symmetrical of the 
positive sequence, meaning 

S R T R R( ) = ( ),    ( ) = ( 2 ) = ( )
3 3 3
T T Te t e t e t e t e t    

and do not contain any DC component.  
The line voltages measured with respect to the ground, 

uRG, uSG and uTG, are reduced with respect to the internal vol-
tages eR, eS and eT of the distribution system by the voltage 
drop on the internal impedance, Zs, of the system. Because 
of load imbalance, load currents are, in general, asymmet-
rical, causing the voltages uRG, uSG and uTG to also exhibit 
some level of asymmetry. These voltages are not applied to 
the load, however. The load is supplied by line-to-neutral 
voltages uRN, uSN and uTN, reduced with respect to voltages 
uRG, uSG and uTG by the voltage uN, meaning by the voltage 
drop of the neutral current iN on the neutral impedance ZN. 
For example, this voltage at R terminal is equal to  

(7)                       RN R s R N N .U E Z I Z I    

Thus, individual line-to-neutral voltages uRN, uSN and uTN are 
effected by the neutral current iN, i.e., and consequently, by 
each of line currents iR, iS and iT separately. It means that a 
single-phase load supplied, for example, from line S can 
affect the load supplied from line T and opposite. The high-
er the neutral conductor impedance ZN the stronger interac-
tion. Therefore, to reduce this interaction, 3pN systems are 
built to have the neutral conductor impedance ZN as low as 
possible. 
 Energy conversion in the load and consequently, the 
load powers, are dependent on the line-to-neutral voltages 
uRN, uSN and uTN and power properties of 3pN loads will be 
analyzed just at these supply voltages. Therefore, to simpli-
fy mathematical formulae, their symbols will be reduced in 
the remaining part of this paper to uR, uS and uT.  

 Although the supply voltage in 3pN systems could be 
asymmetrical, the asymmetry of the supply current, caused 
by the load imbalance, is usually much higher, and it has a 
much greater effect on the condition of energy delivery than 
the voltage asymmetry. This paper focuses only on effects 
of the load imbalance on power properties of 3pN systems. 
Therefore, it is assumed that loads are supplied from an 
ideal source of a symmetrical and sinusoidal voltage. The 
three-phase rms value of such a voltage vector u can be 
defined [15] in the same way as for three-wire systems, 
meaning 

(8)     4 3 R S T
2 2 2

R|| || || || || || || || + || || +|| || 3u u u U .   u u u  

Apparent power 
 As suggested in Ref. [15], the apparent power in three-
phase systems should be defined as the product of three-
phase rms values of the supply voltage and currents. This 
suggestion was later supported by results of analysis of 
various definitions of the apparent power presented in Ref. 
[13]. According to that suggestion, the apparent power in 
3pN systems with an ideal source of symmetrical voltage, 
should be defined as 

(9)               4 4 3 3

df
|| || || || || || || || || || || ||S .  u i u i u i   

Thus, at conditions as assumed above, there is no differ-
rence between apparent power definition for 3p and 3pN 
systems. 

Currents’ Physical Components (CPC) in 3pN systems 
with LTI loads 

The basic circuit for analyzing power phenomena in 3pN 
systems is a circuit with a linear, time-invariant (LTI) load 
supplied with sinusoidal and symmetrical voltage of the 
positive sequence from an ideal source.  

Any three-phase LTI load configured in star (Y), shown 
in Fig. 5a, with an ideal (meaning with zero impedance) 
neutral conductor, is equivalent with respect to the active 
power P to a balanced resistive load, shown in Fig. 5b.  

 

Fig. 5 (a) LTI load configured in Y and (b) its resistive balanced 
load equivalent as to the active power P. 

Since the active power of the original load is 

(10)             2 2
R S T R R S T RRe{ + + } ( + + )* * *P U G G G UY Y Y    

thus, conductance Ge of a resistive balanced load, equiva-
lent with respect to the active power is equal to 

(11)              e R S T2 2
R

1 ( + + )
3|| || 3

P PG G G G
U

  
u

  

it will be referred to as an equivalent conductance of a 
load supplied with 3pN line. Such an equivalent resistive  
load draws a current, which is in-phase with the supply 
voltage u and can be regarded as the active current of the 
load, namely 
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(12)                              a e( ) ( ).t G ti u   

It is the current of the lowest rms value such that the load at 
voltage u has active power P.  

The original LTI load is equivalent with respect to the 
reactive power Q to a balanced reactive load, shown in Fig. 
6b, of susceptance Be. 

 

Fig. 6 (a) LTI load configured in Y and (b) its reactive balanced load 
equivalent as to the reactive power Q. 

 The reactive power Q of the original load is  

(13)         2 2
R S T R R S T RIm{ + + } ( + + )* * *Q U B B B UY Y Y     

thus, the susceptance of a reactive balanced load, equiva-
lent to the original load with respect to the reactive power Q 
is equal to 

(14)           R S T2 2
R

e
1 1 ( + + ).
3 3|| ||

Q Q
B B B B

U
    

u
 

It will be referred to as the equivalent susceptance of 
loads supplied with 3pN lines. Such a reactive load draws a 
reactive current 

(15)           1

R

r e e S
1

R

= 2 Re{ }.
( )

j tdB jB e
d t

U

U

U




 
   
  

i u   

It is a symmetrical current of the same sequence as the 
supply voltage, meaning of the positive sequence.  

The equivalent conductance and the equivalent suscep-
tance can be combined together to form the equivalent 
admittance 

(16)               
df

e e e R S T
1+ ( ).
3

G jBY Y Y Y   
 

The residual component of the current occurs due to the 
load imbalance and is equal to 

1

1 1

R e e R

u a r S e e S

T e e T

R e e Rudf

S e e R Su

T e e Tu

( )

     2Re{ ( ) } =

( )

( )    

 2Re{ ( ) } = 2Re{ }.  

( )   

j t

j t j t

G jB

G jB e

G jB

G jB

G jB * e e

G jB

Y U

Y U

Y U

Y I

Y U I

Y I



 


  
       
   

    
        
       

i i i i(17) 

 

The physical nature of the residual current iu is not clear 
at this moment. We can only say that this current is associ-
ated neither with the active nor with the reactive power. Let 
us calculate the crms value of the symmetrical component 
of the positive sequence of this current. It is equal to 

p
u Ru Su Tu

R e e S e e T e e R

R S T e e R

1 ( ) =
3

1  = [( ) ( ) ( ) ] =
3

1                     = [( ) 3 3 ]  = 0.
3

*

G jB G jB * * G jB

G j B

I I I I

Y Y Y U

Y Y Y U

 

   

  

       

   

(18)                      

 

Thus, this current does not contain any component of the 
positive sequence, meaning it occurs due to the supply cur-
rent asymmetry.  
 The crms value of the negative sequence component of 
this current is equal to 

n
u Ru Su Tu

R e e S e e T e e R

df
n

R S T R R

1                      ( ) =
3

1= [( ) ( ) ( ) ] =
3

1                       = ( ) =
3

*

G jB * G jB * G jB

*

I I I I

Y Y Y U

Y Y Y U A U

 

   

 

  

       

 

(19)

 

where 

(20)                 
df

n
R S T

1= ( )
3

*A Y Y Y   . 

The crms value of the zero sequence component of the 
residual current is equal to 

z
u Ru Su Tu

R e e S e e T e e R

df
z

R S T R R

1 ( ) =
3

1= [( ) ( ) ( ) ] =
3

1                    = ( ) =
3

G jB G jB * G jB

*

I I I I

Y Y Y U

Y Y Y U A U

 

 

  

       

 

(21)                      

 

where 

(22)                 
df

z
R S T

1= ( ).
3

*A Y Y Y    

When phase-to-neutral admittances YR, YS and YT are 
mutually equal, meaning the load is balanced, then admi-
tances An and Az are equal to zero and consequently, the 
supply current does not contain iu component. It occurs only 
when the load is unbalanced. It means that the current iu 
stands for the unbalanced current. It is composed of the 
negative and positive sequence components,  

(23)                               n z
u u u i i i , 

where 

1 1

1

n n
R R

df
n n n
u S T

n n
T S

n

= 2Re{ } 2Re{ } 

                  2Re{ }

j t j t

j t#

e e

e

I A U

I A U

I A U

A

 



   
   
    
   
      



i

U

(24)        
 

  1 1

1

z z
R R

df
z z z
u S R

z z
T R

z
R

25 = 2Re{ } 2Re{ }

                     = 2Re{ }.

j t j t

j t

e e

e

I A U

I A U

I A U

A

 



   
   
    
   
      

         i

U  

The symbol #U in formula (26) denotes a vector of crms 
values of line-to-neutral voltages with switched US and UT 
entries, while RU  in formula (27) denotes vector of the 
same crms values UR. 
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These two currents will be called negative and zero 
sequence unbalanced currents of a LTI load, respective-
ly, and consequently, the complex number An will be called 
a negative sequence unbalanced admittance, while Az 
will be called a zero sequence unbalanced admittance of 
the load. 
 Unbalanced admittances An and Az are equal to zero 
when admittances YR, YS and YT are mutually equal, but this 
is only a sufficient, but not a necessary condition to have 
zero unbalanced admittances. They can be zero even if 

YR  YS   YT 

but in such a situation only one of them An or Az can be 
equal to zero. When the load is unbalanced then the supply 
current has to contain at least one of two unbalanced 

currents n z
u u, or i i . 

 With formula (23) the current decomposition expressed 
with formula (17) can be rewritten as  

(26)                       n z
a r u u .   i i i i i   

 Currents ia, ir, 
n
ui and z

ui  in this decomposition can be 
regarded as the Currents’ Physical Components, CPC, of 
three-phase LTI loads with neutral conductor, supplied from 
a source of symmetrical sinusoidal voltage. Physical inter-
pretation of the active and reactive currents, ia, and ir, is 
exactly the same as in 3p systems. The active current ia is 
associated distinctively with the phenomenon of permanent 
energy transmission and consequently, with the load active 
power P. The reactive current ir is associated distinctively 
with the phenomenon of the phase-shift between the supply 
voltage and current and consequently, with the load reac-
tive power Q. The negative sequence unbalanced cur-
rent n

ui is an effect of the supply current asymmetry due to 
the load imbalance, but it does not require any neutral 
conductor for its presence. The zero sequence unbalan-
ced current z

ui is also an effect of the supply current 
asymmetry caused by the load imbalance, but it cannot 
occur in the supply current if the load is not equipped with 
the neutral conductor.  
 One should observe that in spite of the adjective 
‘physical’, Currents’ Physical Components do not exist as 
physical quantities. They are nothing other than mathema-
tical entities, obtained by a specific decomposition of the 
supply current. These entities are only associated with 
distinctive physical phenomena in the load. For example, 
when a load causes a phase-shift between the supply 
voltage and the load current, then the supply current can be 
decomposed into components, such that one of them is the 
reactive current. There are an infinite number of different 
decompositions of the same current, without any reactive 
component, however.  

Equivalent circuit of 3pN loads 
Decomposition (26) means that a LTI load supplied with 

3pN line from a source of sinusoidal and symmetrical 
voltage has an equivalent circuit composed of four parallel 
circuits that draw individual n

a r u, ,i i i  and z
ui  currents, as 

shown in Fig 7. 
 The crms value of the negative sequence component 

n
ui  of the supply current in line S in the equivalent circuit 

shown in Fig. 7 is 

(27)               n n n n
Su T S S( )* *I A U A U A U      

and similarly, in line T 

(28)               n n n n
Tu S T T( )I A U A U A U    . 

 

Fig. 7. Equivalent circuit of LTI load supplied from 3pN line with 
symmetrical sinusoidal voltage. 
 The crms value of the zero sequence component z

ui  of 
the current in line S in the circuit, shown in Fig. 7 is 

(29)                z z z z
Su R S S( )I A U A U A U     

and similarly, in line T 

(30)                z z z z
Tu R T T( )* *I A U A U A U    . 

 The four physical components of the supply current are 
mutually orthogonal hence their rms values fulfill the rela-
tionship 

(31)                2 2 2 n 2 z 2
a r u u|| || = || || + || || + || || + || || .i  i i i i  

Orthogonality of unbalanced currents n
ui and z

ui  between 
themselves and orthogonality to other components result 
from differences in their sequence. Current n

ui is of nega-
tive sequence; current z

ui  is of zero sequence, while cur-
rents ai  and ri  are of positive sequence. The relationship 
(31) is illustrated in Fig. 8. 

 
Fig. 8. Diagram of three-phase rms values of CPC. 

Three-phase rms values of particular components are 

equal to 

(32)                               a e|| || = || ||Gi u  

(33)                               r e|| || = | | || ||Bi u  

(34)                               n n
u|| || = || ||Ai u

 

(35)                               z z
u|| || = || ||.Ai u  

The active and reactive currents ai  and ri  are sym-
metrical of the positive sequence, while the unbalanced 
current n

ui is symmetrical of the negative sequence. Thus, 
these three currents in supply lines R, S and T add up to 
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zero, not contributing to the neutral current. The neutral 
current iN is an effect of the presence of the zero sequence 
component of the unbalanced current, namely 

(36)      1 1z z z
N Ru u R3 3 2 Re{ } 3 2 Re{ }j t j ti i e eI A U     

and its rms value is equal to 

(37)                             z
N|| || 3 || ||.i A u  

Illustration 2. Let us calculate the rms values of the 
supply Current Physical Components for the load shown in 
Fig. 9, assuming that the supply voltage is symmetrical and 
the rms value of the voltage at terminal R is UR = 120 V.  
 The line-to-neutral admittances of the load are equal to 

R S T
1 0 5 0 87 S,   1 S,   0

0 5 0 87
. j .

. j .
Y Y Y    

  

thus, the equivalent admittance of the load equals to 

        e e e
1+ (0 5 0 87 1)  = 0.50 0 29 S.
3

G jB . j . j .Y       

 

Fig. 9. Example of an unbalanced load supplied with 3pN line. 

The negative sequence unbalanced admittance is equal to 
zero, since 

0n 120
R S T

1 1( ) = (0 5 0 87 1 1) = 0
3 3

j* . j . eA Y Y Y        

while the zero sequence unbalanced admittance is equal to 
0

0

z 120
R S T

90

1 1( ) = (0 5 0 87 1 1) =
3 3

      = 0.58 S.

j

j

* . j . e

e

A Y Y Y  



     
 

Thus, the supply current contains z n
u u, but not  i i compon-

ent. Since the three-phase rms value of the supply voltage 
is  

R|| || = 3 3 120 207 8 VU .  u  

three-phase rms values of the supply current physical com-
ponents are equal to 

a e|| || = || || = 0.50 207.8 = 103.9 AG i u  

r e|| || = | | || || = 0.29 207.8 = 60.3 AB i u  

n n
u|| || = || || = 0Ai u  

z z
u|| || = || || = 0.58 207.8 = 120.5 A.A i u

 

The crms value of the zero sequence unbalanced current in 
line R, z

Rui , is equal to 

0 0z z 90 90
Rn R 0.58 120 69 6 A.j je . eI A U       

The zero sequence currents in lines S and T, of course, 
have the same crms value. The crms value of the neutral 
current is 

0 0

N R
z 90 90
n3 3 69 6 = 208 8 A.j j. e . eI I      

Powers of 3pN loads  
Decomposition of the supply current of an LTI load sup-

plied with symmetrical sinusoidal voltage of the positive 
sequence into the CPCs, leads directly to the power 
equation of such a load. Multiplying eqn. (31) by the supply 
voltage u  three-phase rms value || ||,u  we obtain 

(38)                      2 2 2 n2 z2
u uS P Q D D     

with 

(39)                       2
a e= || || || || = || ||P Gi u u

 

(40)                       
df

2
r e|| || || || = || ||Q B  i u u  

(41)                       
df

n n n 2
u u|| || || || = || ||D A i u u  

(42)                       
df

z z z 2
u u|| || || || = || ||D A . i u u  

 This power equation contains two new power quantities, 
n
uD  and z

uD . These two powers are associated with the 
presence of the negative and zero sequence unbalanced 
components in the supply current. Therefore, they will be 
called negative sequence unbalanced power and zero 
sequence unbalanced power, respectively. The power 
equation is illustrated geometrically with a diagram shown in 
Fig. 10. 

 

Fig. 10. Diagram of powers of LTI load supplied with a symmetrical 
sinusoidal voltage with 3pN line. 

The power equation (38) describes the relationship 
between powers of an LTI load supplied by 3pN lines from a 
symmetrical source of sinusoidal voltages.  

Illustration 3. Let us calculate the active, reactive and 
both unbalanced powers for the unbalanced load shown in 
Fig. 11, assuming that UR = 120 V. 

 

Fig. 11. Example of an unbalanced load. 

For such a load, the equivalent admittance is equal to 

e e e
1+ (0 50 0 87 2 0)  = 0.83 0 29 S.
3

G jB . j . . j .Y     
 

The negative sequence unbalanced admittance is 

0

0

n 120
R S T

120 1

1 1( ) = (0 5 0 87 1 0 5) =
3 3

      = 0.33 S

j

.

* . j . e .

e

A Y Y Y  



     
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while the zero sequence unbalanced admittance has the 
value 

0

0

z 120
R S T

101

1 1( ) = (0 5 0 87 1 0 5) =
3 3

      = 0.88 S.

j

j

* . j . e .

e

A Y Y Y 



     
 

Since  

                     R|| || = 3 3 120 207 8 VU .  u   

the particular powers are equal to 

2 2
e = || ||  0.83 (207.8) 36 0 kWP G .  u   

2 2
e = || || 0 29 (207.8) 12 5 kvarQ B . .   u  

n n 2 2
u  = || ||  0.33 (207.8)  7.2 kVAD A   u

 
z z 2 2
u  = || ||  = 0.88 (207.8) = 38.0 kVA.D A u  

Power factor  
The power factor of LTI loads supplied with symmetrical 

sinusoidal voltage in 3pN systems is equal to 

(43)                 
2 2 n2 z2

u u

P P
S P Q D D

  
  

  

thus, not only the reactive power Q, but also both unba-
lanced powers, n

uD  and z
uD  contribute to the load power 

factor degradation. The power factor can be expressed not 
only in terms of powers, but also in terms of three-phase 
rms values of CPCs of the supply current, namely 

(44)       a a
2 2 n 2 z 2

a r u u

|| || || ||
|| || || || || || || || || ||

P .
S

   
  

i i
i i i i i

 

Particularly important is the possibility of expressing the 
power factor in terms of the load parameters, in particular, 
in terms of the equivalent conductance, Ge, susceptance, Be 
and the magnitude of unbalanced admittances An and Az  

(45)               a e
n 2 z22 2

e e

|| ||
|| ||

G
.

G B A A
  

  

i
i

 

Thus, the power factor of 3pN loads declines  from unity 
value because of non-zero equivalent susceptance Be of the 
load, the negative sequence unbalanced admittance An and 
the zero sequence unbalanced admittance Az. This last for-
mula emphasizes the fact that the power factor depends 
only on the load properties, but not on voltages, currents or 
powers. It is defined in terms of the active and apparent 
powers, but eventually, only the load properties specify the 
power factor value. Also, in a case of reactive compensa-
tion, only a change by means of such a compensator of the 
parameters as seen by the supply makes the power factor 
improvement possible.  

Conclusions  
 The paper demonstrates that three-phase systems with 
a neutral conductor and linear, time invariant loads supplied 
from a source of sinusoidal and symmetrical voltage can be 
described, not only phase-by-phase, but as a whole, in 
terms of active, reactive and two unbalanced powers. The 
obtained power equation has more power terms than com-
monly used equation (1), and these powers are associated 
with distinctive properties of the load.  

 Equally important is a conclusion that the vector of the 
supply current i can be decomposed into four mutually 
orthogonal Physical Components, uniquely associated with 
distinctive phenomena and properties of the load. These 
components are specified in terms of their three-phase rms 
values ||.|| and can be expressed in terms of the load para-
meters. Thus, the effect of each of these properties, separa-
tely, on the energy loss at its delivery can be investigated. 
Therefore, this paper provides a starting point for studies on 
reactive compensation in 3pN systems. 
 More advanced issues such as the effect of waveform 
distortion, both on the supply side and caused by harmonics 
generating loads, on the power properties of the system, 
are not the subject of this paper. 
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