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A numerical method for current density determination
in three-phase bus-bars of rectangular cross section

Abstract. This paper presents a new numerical computation method for determining the current distributions in high-current three-phase
busducts of rectangular busbars. This method is based on the integral equation method and the Partial Element Equivalent Circuit (PEEC)
method. It takes into account the skin effect and proximity effects, as well as the complete electromagnetic coupling between phase bars
and the neutral bar. In particular, the current densities in rectangular busbars of unshielded three-phase systems with rectangular phase
and neutral busbars, and the use of the method are described. Finally, two applications to three-phase unshielded systems busbars are
presented.

Streszczenie. W artykule przedstawiono nowg numeryczna metode obliczania rozktadu gestosci pradu w szynoprzewodach prostokgtnych
tréjffazowego toru wielkopradowego. Metoda wykorzystuje réwnie catkowe i oparta jest na teorii obwodowych czgstkowych elementéw
zastepczych. Uwzglednia ona zjawisko naskérkowosci i zblizenia oraz catkowite sprzezenie magnetyczne miedzy szynoprzewodami
fazowymi i szynoprzewodem neutralnym. W szczegédlnosci opisano rozktad gestosci prgdu i zastosowanie tej metody dla przypadku
tréjffazowego toru wielkopradowego o prostokatnych szynoprzewodach fazowych i prostokatnym szynoprzewodzie neutralnym. Rozktady
gestosci prgdéw wyznaczono dla dwoéch przyktadéw uktadéw tréjfazowych z szynoprzewodami prostokatnymi.(Numeryczna metoda

obliczania gestosci pradu w tréjfazowym ukfadzie szynoprzewodéw prostokatnych.)
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Introduction

High-current air-insulated bus duct systems with
rectangular busbars are often used in power generation and
substation, due to their easy installation and utilization. The
increasing power level of these plants requires an increase
in the current-carrying capacity of the distribution lines
(usually 1-10 kA). The medium voltage level of the
generator terminals is 10-30 kV. The construction of busbar
is usually carried out by putting together several flat
rectangular bars in parallel for each phase in order to
reduce thermal stresses. The spacing between the bars is
made equal to their thickness for practical reasons, and this
leads to skin and proximity effects. The bus ducts usually
consist of aluminum or copper busbars [1, 2]. A typical
cross-section of the unshielded three-phase high-current
bus duct is depicted in Fig. 1.
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Fig. 1. Three phase high-current bus duct of rectangular cross-
section with two busbars per phase and one neutral busbar

The distribution of AC current density in the cross-
section of each busbar of a system of busbars is generally
non-uniform, and known as “skin effect”. It can be found
exactly only for simple geometries like round wires and
tubes [3-7], or very long and thin rectangular busbars (tapes
or strips) [7-10]. For more complex cross-sections,
analytical-numerical and numerical methods must be used
to find the current distributions, which is further modified by
the proximity of other conductors — “proximity effect” [11-
17]. Both the skin effect and proximity effect will generally
cause the current distribution is not uniform over the cross
section of a busbar. Since the current distributions influence
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the AC inductances and resistances of the busbars, the
voltage regulation and power loss of a system is affected by
the design of its current busses. The development of
efficient numerical methods for the solutions of these
problems is therefore of interest.

Integral equation

The integral formulation is well known [3, 4, 18-24] and
is derived by assuming sinusoidal steady-state, and then
applying the magnetoquasistatic assumption that the
displacement current, jwsE, is negligible. In the case of N
straight parallel conductors with length /, conductivity o; (i =
1, 2,..., N), cross section S; with sinusoidal current input
function with angular frequency » and complex value [;
flowing in the direction of Oz, the complex current density
has one component along the Oz axis, that is J,(X) = aJ(X).
The component Ji(X) is independent of variable z, and in a
general case, depends on the self current and on the
currents in the neighboring conductors (the skin and
proximity effects). Then also the vector magnetic potential
A(X) = a.4(X), the electric field E(X) = a.E(X), and the ideal
conductor constitutive relation is J,(X) =g,Ei(X). Then, the
integral equation for i conductor is given as follows

LX) | joug § jlj(Y)

o; R

(1)

Vi =Y

where X'= (x|, y, z;) is the observation point, Y= (x,, y, z5), is
the source point, pyy = |X — 7] is the distance between the
observation point X and the source point Y (Fig.2), v;and v;
are the volume of the i and the jth conductor, respectively,
u; is the unit voltage drop (in V-m'1) across the i conductor,
andij=1,2,..,N.

Then, by simultaneously solving Eq. (1) with the current
conservation, V-J(X)=0, the conductor current densities
and the unit voltage drops can be computed. In the case
shown in Fig. 1, the following integral equation can be
written for arbitrary point X in each busbar and the
enclosure:
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Fig. 2. The " and /" conductors of a system of N parallel busbars
of rectangular cross section
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where:

- N, is the number of phases plus the neutral plus the
enclosure andi,j=1,2,...,N.(N.=5),

- N;is the number of busbars belonging to one phase or the
neutral or the number of rectangular plates of which the
enclosure consists (usually 4), and k, /=1, 2,..., N,

Multiconductor model of the busbars

In this model, each phase, neutral busbars and each
plate of enclosure is divided in several thin subbars [2, 25-
30], as shown in Fig. 3.
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Fig. 3. The k" bar of the i" phase divided into N;, = N{YN subbars

This division of the £ bar of the i phase or the neutral
into subbars is carried out separately for the horizontal (Ox
axis) and vertical (Oy axis) direction of its cross-sectional
area. Hence, subbars are generally rectangular in the
cross-section, with the width 4a and thickness 4b, defined
by the following relations:

b
3) Aa=—2_ NER

N)(Ci’k) and Ab=

where a and b are the width and the thickness of the
busbar, respectively, N and N are the number of
divisions along the busbar width and thickness respectlvely
Thus, the total number of subbars of the & bar of the i
phase is Ny =N ”‘>N(”‘ and they are numbered by m = 1, 2,
..oy Nig. For the /M bar of theJ phase or the neutral we have
the total number of subbars N,;= NN numbered by n =
1,2, ..., N;;. All subbars have the same length /.

If the area S,(",’()—Aa -Ab of the m"™ subbar is very small
and the diagonal [(Aa) +(4b) ]1/2 of it is not greater than skin
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depth, we can neglect the skin effect and assume that the
complex current density can be considered uniform, i.e.

o _ L%

m) _ =i

(4) li’k - (m)
tk

where I,(”” is the complex current flowing through the m™
subbar.

Busbar |mpedances
For the m" subbar or plate the integral equation (2) can
be written as

(m)(X) N.N; N;,; J(’l)(y)
qu cJ J ~’[
(5) ———+ 0TS S [ =y,
9 A=l ety PXY

where v(") is the volume of the »n" subbar or plate of the m

bar or plate of theJ phase or the neutral or the enclosure.

Now, we can divide Eqg. (5) by the area S} and
integrate over the volume v,-(,",’() of the m™ subbar or plate,
obtaining the following equation:

(m) y(m) (mn) —p(n) _
(6) Ri,rlg £i,m +lezllzl nzl M(lmk;(J n= lnl Ui,

where U, is the voltage drop across of all subbars of the i
phase or the neutral or the shield ghey are connected in
parallel), and the resistance of the m " subbar is defined by

[
(7) RO = (m)

l

and the self or the mutual inductance is expressed as

(m) 1.(n)
(8) M(m,n) _ HO dviak deJ

RO~y S;rg@ﬁ,ﬂ? ym
5 s i, Js

Pxy

The exact closed formulae for the self and the mutual
inductance of rectangular conductor of any dimensions,
including any length, are given in [19] and [20] respectively.
Not only do not we use the geometric mean distance here,
we do not use the formula for mutual inductance between
two filament wires as well.

The set of equations like as (6), written for all subbars,
forms the following general system of complex linear
algebraic equations

|—>

©) U=zI,

A

where U and 1 are column vectors of the voltages and

currents of all subbars, respectively, and Z is the

symmetric matrix of self and mutual impedances (the
impedance matrix) of all subbars, the elements of which are

m) , ()
R'Z' +jo M
(m.n)
M 6.0y

= =7 = l
(mn) . m n,i ], k s
(0) Ziiiyjn = otherwise.

Then, we can find the admittance matrix f , Which is the

inverse matrix of the impedance matrix Z and it is

expressed as
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Y = [Yo_n,n)

A —1
—u.k)(j,l)] =Z

(11)

and has a similar structure as ; Then it is possible to

determine the current of the m™ subbar of the & bar of the
" phase or the neutral as

(12) Ly =

zzz&map

j=li=l n

The total current of the i phase or the neutral is

(13)

% o
m

k=lm=1

By inserting Eqg. (12) into Eq. (13), we obtain

NL‘
(14) ;=27 ,U;,
j=1
where
N; Nip N,
(15) Lij=2 2 2 Z_§Tk§3, -

From the admittance matrix with elements given by Eg.
(15), we can determine the impedance matrix of a shielded
three-phase system busbars with the neutral busbar as
follows

-l

—l] *

(16) 2=z, |-x

Since each Z;; is obtained from a matrix whose elements
are comprised of information related only to construction
and material, its value is not affected by the busbar current.
In spite of that the skin and proximity effects are taken into
consideration.

Current densities

If we assume all sinusoidal phase currents to be given,
we can write that the neutral current Iy =1, + L, + L1 and,
from Eq. (14), find all voltages across phase and neutral
busbars as

N,
U, = ZZU L.
]_

(17)

Thus, from that and Eq. (12) it is possible to determine all
currents in subbars, and finally calculate, according to Eq.
(4), current densities in them. These densities differ across
the cross sections of the busbars due to the skin and
proximity effects.

Numerical examples

The first numerical example selected for this paper
features a three-phase system of rectangular busbars with
one neutral busbar, whose cross-section is depicted in
Fig.1. According to the notations applied in this figure, the
following geometry of the busbars has been selected: the
dimensions of the phase rectangular busbars and the
neutral busbars are a =60 mm, b=b,=5mm,
d=d, =90 mm. The phase busbars and the neutral are
made of copper which has the electric conductivity of
c=56 MS'm '. The frequency is 50 Hz. All phases have
two busbars per phase - Ny =N, =N; =2, and the neutral
has one busbar — N, = 1. The length of the busbar system is
assumed / = 10 m. In the numerical procedure, each phase
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busbar is divided into N{*¥ = 30 and N*¥ = 5, which gives
150 subbars for each busbar. Hence, all three phases and
the neutral busbars have 1050 subbars in total. With the
chosen division, each rectangular subbar has dimensions of
2 x 1 mm. This allows for the fact that the current density is
uniform on the surface of the subbars. During the
simulation, three balanced currents with busbar-rated
values I; = 1 kA are imposed in phases as shown

: 0 N (8}
L=l 120" el

and [y =1,+1,+15=0.

(18)

As a first result, the current density comparison along x
axis, practically the same along y axis at x = const, in each
busbar is shown in Fig. 4.
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Fig. 4. Current density along line s (see Fig. 1) in busbars of the
high-current three-phase busducts with two busbars per phase and
one neutral bar in the case of three balanced current

The case of three unbalanced currents
—j120° j120°
1,=050e"", [,=1e",
and 1,

(19) C60°
=1, +1,+1;=05 e’

has been also investigated — Fig. 5.
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Fig. 5. Current density along line s (see Fig. 1) in busbars of the

high-current three-phase busducts with two busbars per phase and
one neutral bar in the case of three unbalanced current

The second configuration of a three phase busbar
system, the current density of which are investigated, is
shown in Fig. 6. It has only one busbar per phase and
neutral - Ny =N,=N;=N,=1. The length of the busbar
system and the busbar division are as in the previous
example (150 subbars for each busbar). Hence, all three
phase and the neutral busbars have 600 total subbars. With
the chosen division, each rectangular subbar has still
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dimensions of 2 x 1 mm. During the simulation, three
balanced — Eq. (18) - and three unbalanced — Eq. (19) -
currents with busbar-rated values I = 1 kA are imposed in
phases, and the current densities comparison along x axis,
practically the same along y axis at x =const., in each
busbar are shown in Fig. 7 and Fig. 8, respectively.

Fig. 6. Three phase high-current bus duct of rectangular cross-
section with one busbar per phase and one neutral busbar
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Fig. 7. Current density along line s (see Fig. 6) in busbars of the
high-current three-phase busducts with one busbar per phase and
one neutral bar in the case of three balanced current
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Fig. 8. Current density along line s (see Fig. 6) in busbars of the
high-current three-phase busducts with one busbar per phase and
one neutral bar in the case of three unbalanced current

Conclusions

A novel approach to the solution of current density
distribution in the high-current bus ducts of rectangular
cross-section has been presented in this paper. The
proposed approached combines the Partial Element
Equivalent Circuit (PEEC) method with the exact closed
formulae for AC self and mutual inductances of rectangular
conductors of any dimensions, which allows the precise
accounting for the skin and proximity effects. Complete
electromagnetic coupling between the phase busbars and
the neutral busbar is taken into account as well.

As Figures 4 and 5 as well as 7 and 8 show, both the
skin effect and proximity effect will generally cause the
current density in the busbars has a strongly non-uniform
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distribution across each busbar. Moreover, the distributions
are different in individual busbars. Knowing the current
distribution is important in evaluating the electrodynamic
force on each busbar. It is possible also to evaluate the
temperature of the different components of the busbar
system.

The proposed method allows us to calculate the current
density distribution in a set of parallel rectangular busbars
of any constant cross-sections including any length.
However, the current density vector is assumed to have
only a z-component independent on z, which means that the
fringing is neglected, and therefore the length should be
large enough. The basic difference between the proposed
model and existing models is that it uses expressions for
inductances for subbars of finite dimensions. To obtain
more accurate results, the fringing must be taken into
account, but it requires a 3D model, which is much more
time and memory consuming.

The validity of our numerical method has been
successfully compared with a classical finite element
method (FEM) such a FLUX2D software in the case of 2D
busbar systems, particularly for the long busbars.

The proposed model is strikingly simple, and from a
logical stand-point can be applied in general to conductors
of any constant cross-section, whereas many conventional
methods, being much more complicated, often require a
greater or lesser degree of symmetry. From the practical
stand-point of the calculations involved, the model requires
the solution of a rather large set of linear simultaneous
equations. However, this solution is well within the range of
the ability of existing computers, even those slightly
overage.
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