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Outage probability analysis of system with dual selection 
combining over correlated Weibull fading channel in the 

presence of α-µ co-channel interference 
 
 

Abstract. In this paper, the performance of the system with dual selection combining over correlated Weibull fading channel in the presence of α-µ 
distributed co-channel interference is studied. The closed-form expressions for probability density function and cumulative distribution function of the 
signal-to-interference ratio at the output of the selection combining receiver are presented. The effect of correlation on the system performances is 
investigated and numerical results are shown. 

 
Streszczenie. Analizowano właściwości system transmisji z podwójna selekcją składającego się ze skorelowanego kanału Weibulla w obecności 
interferencji typu α-µ. Przedstawiono krzywe gęstości prawdopodobieństwa i skumulowana dystrybuantę stosunku sygnału do interferencji. 
(Prawdopodobieństwo przerw w systemie skorelowanego kanału Weibulla w obecności interferencji typu α-µ) 
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Introduction 
In wireless communication systems, phenomenon of the 

variance of momentary value of the received signal, called 
fading, is one of the main causes of degradation of system 
performances. There are various statistical models that 
explain the nature of fading and several distributions which 
describe fading statistics including Rayleigh, Rice, 
Nakagami-m and Hoyt. Nakagami-m distribution is 
preferred because wide range of its applicability and 
mathematical tractability. Also, it can be reduced to 
Rayleigh distribution for appropriate value of parameter m. 
The main problem is that there is no such distribution which 
adequately fit to measured data. One of the distributions 
that show good fit with experimental data is Weibull 
distribution [1] - [4].  

To describe the fading models, besides the Weibull, 
there is a more generalized α-μ distribution which is valid for 
the non-linearity of the propagation medium as well as for 
the multipath clustering. The α-μ distribution is a general 
fading distribution that can be used to represent the small-
scale variation of the fading signal in a non-line-of-sight 
fading condition. This fading model has mathematical 
precedence and huge flexibility, providing a very good fit to 
measured data over a wide range of fading conditions. This 
distribution has two physical parameters, α and μ. The 
parameter α is related to the non-linearity of the 
environment, whereas the parameter μ is associated to the 
number of multipath clusters [5] – [7]. 

Diversity technique is one of the most used methods for 
minimizing fading effect and increasing the communication 
reliability without enlarging either transmitting power or 
channel's bandwidth. Diversity techniques combine the 
multiple received signals in reception device, on different 
ways. There are several types of diversity combining 
techniques. Maximum ratio combining (MRC) and equal 
gain combining (EGC) techniques require more information 
about channel: fading amplitude, phase and delay [8]. The 
implementation of these diversity techniques is quite 
complex and expensive since they require a separate 
receiver for each branch. On the other hand, selection 
combining (SC) diversity technique is simpler for 
implementation because the SC systems process only one 
of the diversity branches. If the noise power is equally 
distributed over branches, SC receiver selects the branch 
with the highest signal-to-noise ratio (SNR) and that is the 
branch with the strongest signal. In fading environments, 
the level of noise can be sufficiently low compared with the 

level of co-channel interference (CCI). In this case, SC 
combiner processes the branch with the highest signal-to-
interference ratio (SIR-based selection diversity) [1] – [3], 
[9] – [12]. 

In communication systems where antennas are 
sufficiently apart, it is considered there is no correlation 
between transmitted signals, as well as between 
interferences at the reception. Diversity systems in the 
presence of uncorrelated fading and interference were 
observed in [13, 14]. However, it cannot be always done in 
practice because there is insufficient antenna spacing when 
diversity is applied in small devices. The SC systems 
performances with a correlation between transmitted 
signals and between interferers are considered in [1] – [4]. 

Performance evaluation of SIR-based dual selection 
diversity over channels in the presence of correlated 
Nakagami-m fading is presented in [10]. Performance 
analysis of the system with dual SC over channels in the 
presence of correlated Weibull fading and co-channel 
interference is observed in [1] and [4]. The similar SC 
system, but triple, is analyzed in [2], and SC combiner with 
L-branches in [3]. 

In this paper, we study dual selection diversity system, 
where the desired signal suffers correlated Weibull fading 
and the interfering signal endures correlated α-μ fading. The 
case that fading in the interference channel can be different 
from fading in the desired transmitted channel is 
scrutinized. This assumption is justified because we 
consider that interference comes from adjacent cells in 
which the propagation conditions may be different from 
those in the observed cell. The closed form expressions of 
probability density function (PDF) and cumulative 
distribution function (CDF) are derived when there is the 
correlation of desired signals and between interferers. 
Analytical expression for outage probability is determined 
and numerical results are graphically shown. 

 
Statistics of output SIR 

The α-µ distribution is a general fading distribution that 
can be used to represent the small-scale variation of fading 
signal. The probability density function fR(R) is α-μ 
distributed and can be written as [5]: 
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with parameter µ, an arbitrary parameter α>0, and α-root 

mean value   ][ˆ RER  . If ][ 2REc   is the mean 

power of the signal, then it is: 
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The probability density function fr (r) is given with 
Weibull distribution: 
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where   ][ˆ rEr   is a α-root mean value of the parameter 

α. The mean power of the signal is now 
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Now, the case with dual selection combined diversity 
system operating in environment where the desired signal 
suffers correlated Weibull fading and the interfering signal 
endures correlated α-µ fading due to insufficient spacing 
between antennas is examined. 

The joint probability density function of the interfering 
signal envelopes R1 and R2 is [5]: 
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where δ is the correlation coefficient, Ωc1 and Ωc2 are the 
average signal interference powers at the first and the 
second branches, respectively. Iµ-1(.) is the modified Bessel 
function of the first kind and the order µ-1. It can be 
developed into the order using [15, eq. 03.02.02.0001.01]. 
Now, the joint probability density function can be written as: 
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For desired signal envelopes r1 and r2, in the presence 
of correlated Weibull fading, the joint probability density 
function is [1-3]: 
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where Ωd1 and Ωd2 are the desired signal’s average powers 
at the first and second branches, respectively. I0(.) is 
modified Bessel function of the first kind and zero order. 
Using development of I0(.) into the order [15, eq. 
03.02.02.0001.01], it is obtained: 
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The instantaneous values of SIR at the diversity 
branches input can be defined as ζ1=r1/R1 and ζ2=r2/R2. The 
selection combiner chooses and outputs the branch with the 
largest SIR: ζ=max(ζ1,ζ2). 

The average SIR’s at two input branches of the 
selection combiner are S1=Ωd1/Ωc1 and S2=Ωd2/Ωc2, which can 
be determined using (2) and (4) as 
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The joint probability density function of instantaneous 
values of SIR at two output branches ζ1 and ζ2 is [1] 
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Substituting (6) and (8) in (12), we have 
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The joint cumulative distribution function can be found 
as: 
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Substituting (13) in (14), the joint cumulative distribution 
function is now: 
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where 
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The cumulative distribution function of the output SIR 
could be derived from (15) by equating two arguments 
t1=t2=t:  
(17)
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The probability density function of the output SIR is 
obtained from previous expression in the next form: 
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The probability density function of output signal to 
interference ratio for balances and unbalances ratio of SIR 
at the branch’s inputs (S1 and S2), and various values of 
correlation coefficient, δ, is shown in Fig. 1.  
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Fig. 1. Probability density function versus output SIR 
 

Outage probability 
The outage probability Pout is usual system performance 

measure of diversity system operating over channels in the 
presence of fading. In the channels with interference, the 
Pout is defined as the probability that the output SIR falls 
below a specified threshold g: 

(19) )()(),(
0

gFdttpgPP
g
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The specified threshold g is called a protection ratio and 
it depends on modulation technique and expected quality of 
service (QoS).  

Fig. 2 gives the outage probability dependence versus 
values of threshold, for different values of correlation 
coefficient δ, for balanced and unbalanced ratio of SIR. 
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Fig. 2. Outage probability dependence versus threshold g 

It can be seen from this figure that for both, balanced 
and unbalanced case, the worst situation is for bigger 
correlation between antennas. With increasing of correlation 
coefficient δ, the outage probability increases at lower 
values of threshold g. The influence of correlation 
coefficient on the outage probability is lower in the case of 
unbalanced ratio of SIR than in the case when the ratio of 
SIR is balanced. Finally, all curves reach a value of 1 for 
large values of the threshold g. 

The dependence of the outage probability versus the 
normalized average SIR at the input of the first branch of 
the selection combiner, S1, for different values of correlation 
coefficient, δ, and for balanced and unbalanced ratio of SIR, 
is presented in Fig. 3. 
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Fig. 3. Dependence of outage probability versus S1/g 
 

With increasing of correlation, the system has worse 
performance. The outage probability decreases when the 
average SIR on one of the branches increases, as was 
expected. 
 

Conclusion 
In this paper, the performances of the system with dual 

selection combining over fading channel in the presence of 
interference have been studied. The fading between 
interferers is correlated and α-µ distributed. The α-µ 
distribution can be used to represent the small-scale 
variation of the fading signal under a non-line-of-sight fading 
condition. Weibull distribution is used as a fading model 

between the diversity branches. The statistical 
characteristics, such as probability density function, 
cumulative distribution function and the outage probability, 
for the selection combining output SIR are given in the 
closed form. These results are graphically presented with 
curves showing the influence of correlation coefficient and 
distribution parameters. 
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