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Non-pulsed mode of supply in a three-phase system   
at asymmetrical voltage 

 
.  
Abstract. Two orthogonal decompositions of a total three-phase current are considered for a three-phase system with asymmetric sinusoidal voltage 
at the connection point of asymmetrical loading.  In the first one the total current is represented as an orthogonal sum of balanced and non-
balanced current components, the balanced component containing Fryze's active current (active power). In the second decomposition the total 
current is represented as an orthogonal sum of pulsed and non-pulsed current components. Both decompositions are used to create the optimal 
mode of supply with a constant instantaneous power at asymmetrical voltage.  
 
Streszczenie. Analizowano ortogonalna dekompozycję prądów trójfazowych w systemie z napięciem asymetrycznym dołączonym do 
asymetrycznego obciążenia. Prąd całkowity jest sumą składowej zrównoważonej i niezrównoważonej. (Bezimpulsowe zasilanie w systemie 
trójfazowym asymetrycznym)  
 
Keywords: three-phase system, instantaneous power; active and reactive, complex, apparent power; pulsation power, unbalanced load, 
power equation, power factor, unbalanced mode, asymmetrical voltage, compensation 
Słowa kluczowe: sieć trójfazowa, moce chwilowe, składowa czynna I bierna mocy chwilowej 
 
 
Introduction 

The energy transfer from a source with symmetrical 
sinusoidal voltage to a symmetric linear load of three-phase 
system occurs at a constant rate. Instantaneous power (IP) 
has no oscillatory (pulsating) component and is equal to the 
average (active) power: the mode is non–pulsed [1]. Normal 
operation of generators and motors (without fluctuations 
and vibrations) requires the non–pulsed mode. 

In order to balance the asymmetrical load and create the 
balanced (non-pulsed) mode under symmetrical voltage the 
method of compensating the pulsating power (PP) is used 
[1]. However, under asymmetrical voltage the concepts of 
balanced mode [2] and of non-pulsed mode do not coincide 
[3]. Under asymmetrical voltage the compensation of PP 
does not provide the balanced mode. After compensation, 
the IP of source circuit becomes constant, but it is not equal 
to the total active power of the load. Under asymmetrical 
voltage the PP compensator requires to apply active means 
for generating the energy of active power. It remains 
uncertain whether the statement: «…for general  periodic 
voltages and currents parallel compensation can be 
designed such that the power delivered by the supply is 
constant» [4] is true.          

It is possible to create a non-pulsed mode  having IP 
equal to the initial active power by using Fryze’s active 
current [5]. In terms of energy, Fryze’s active current is 
determined unambiguously: "it supplies energy for the given 
voltage with the same (active) power as the total current 
and with minimal losses".  After Fryze’s compensation the 
power factor (PF) is equal to 1 [6]. Under asymmetrical 
sinusoidal voltage the Fryze’s compensator eliminates 
additional losses completely by compensating the 
unbalanced current and the reactive current of the load; it 
also reduces the pulsations significantly, but not in full 
measure (IP is remains non-constant) [6]. 

  Our objective is to create a non-pulsed mode which 
provides the supply energy with the initial active power 
along with minimal loss at asymmetrical voltage. 

 
Energy processes in a sinusoidal mode 

At the connection point of the consumer loading  to the 
distribution network in a three-wire section , ,a b c   of the 
three-phase system the voltage and current sinusoidal 
waveforms  

(1)           ( ) ( ( ) ( ) ( )) 2 [ ]j t
a b ct i t i t i t e e   i I  

(2)           ( ) ( ( ) ( ) ( )) 2 [ ]j t
a b ct u t u t u t e e   u U  

 

are completely defined by three-dimensional complex 

vectors (the voltage 3d-phasor ( )a b cU U UU =     and 

current 3d-phasor ( )a b cI I II =     ) – complex rms vectors:  
 

(3)      
0

2
( )

T
j tt e dt

T
 U u ,         

0

2
( )

T
j tt e dt

T
 I i .   

Here and further   is the transposition symbol, T  denotes 

the period ( =2T  ). The rms values of (1-2) are equal  to  
the voltage and current 3d-phasor  norms  

 

(4)                     a b cI I I I  2 2 2| I | = | | | | | |    , 

(5)                    a b cU U U U  2 2 2| U | = | | | | | |   . 
 

   In sinusoidal operating mode (under sinusoidal 
conditions) the instantaneous power (IP) 
 

 (6)                 ( ) ( ) ( ) ( ) ( ) ( ) ( )a b b b c cp t u t i t u t i t u t i t    
 

 can be expressed as 
 

(7)                2 2( ) [ ] [ ]j t j tp t e S Ne P e Ne        . 
 

The standard complex power (SCP) of the sinusoidal 
operating mode  

(8)                         * * *
a a b b c cS U I U I U I    U I       

                                                
is equal to the complex scalar product of the voltage and 
current 3d-phasors [3] 
   

(9)                                    ( , )S  *U I U I  .        
                                                

Here, the asterisk (*) denotes the complex conjugation 

operation. SCP is the complex number S P jQ  . The real 

part of SCP is the average (active) power during the interval 
of observation [ , ]T     

(10)               
1

( )
T

eS P p t dt
T







    .                            
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The imaginary part of the SCP is equal to the reactive 

power mS Q  .  

The complex amplitude of pulsing power -pulsation power 
(PP)  

(11)    * *( ) ( )a a b b c cN U I U I U I      I U I U I, U          
                                                 

is the complex inner product [3] the current vector and 
*

a b cU U U     U


- the complex-conjugated (CС) 

voltage vector. The following statements are equivalent    
( ) 0p t P N   . 

Buchholz’s apparent power and geometric power are 
defined as [2] 

(12)     BS U I   | U || I | ,     2 2| |GS S P Q    
                                                   
The Cauchy - Schwarz inequality  
 

(13)                 ( , ) | U I |  |U || I | ,            G BS S  

provides the estimate for PF 1BP S   .  
 

Balanced and unbalanced mode 
In (13) equality is attained only when the total current 

vector (CV) is (complex) proportional to the voltage 
( ||I U ) 

(14)    SYI U    a b c
S

a b c

I I I
Y

U U U
  

   
   ,  ( | | Sj

S SY Y e   ). 

Condition (14) defines a balanced mode [2, 3]. If the load is 
symmetric, the mode is balanced. For a 4-wire circuit the 
concepts of balance and load symmetry are equivalent. 
In the 3-wire circuit the definition of a balanced mode 
implies that the measured voltages do not contain 0-
sequence (e.g., line voltages are measured with respect to 
an artificial grounding point [2].) In a 3-wire circuit, the mode 
can be balanced under asymmetrical load too. Thus, the 
Steinmetz’s symmetrization scheme [7]  has an asymmetric 
load, but provides a balanced mode (power 

factor 1BP S   ).  

Balanced mode is characterized completely by the 

complex power ( | |G BS S S  ). SCP provides the 

abbreviated power equation and PF is calculated by the 
phase shift between voltage and current vectors (the 
voltage and current 3d-phasor) 

(15)    2 2 2
BS P Q      

2 2
cos S

B

P P

S P Q
   


.  

 

If the mode is unbalanced, then the orthogonal 
projection of the total current vector (CV) on the voltage 
vector (VV) determines the balanced CV 

  

(16 )          2
2

( )
| |

Y

S U Y


  
S

b S

I U
I U U U

U







 . 

The unbalanced CV uI is the orthogonal complement of 

the balanced CV on the total CV. We have the orthogonal 
decomposition of the current 

  

(17)                  ( )

u

b b u   b

I

I I I - I I I .  

Orthogonal decomposition of the total current (17) gives 
us the Pythagorean theorem for currents and the equivalent 
power equation for the unbalanced mode 

 

(18)     2 2 2b u| I | = | I | | I |  .    2 2 2
B G uS S D    ,   

because [3] 

 (19)          2 2 2 2| | | GS S b| I | U |  ,        2 2 2| uDu| I | U | . 
    

Here | |uD  D  is the norm of imbalanced power vector  

 D U I  (the vector cross product of the total current on 
the voltage);  - is the sign of vector product. 
 

Fryze’ active current in a sinusoidal mode 
Balanced current vector is complex collinear to the ort of 

the VV 1
a b cU U U U U     m U       

(20)                  2
( )

| |
b

b

I

S U U I


  b

m

I U
I U U m

U







 

The complex collinearity coefficient  

(21)               ( )
a r

b a r

I I

S
I P U j Q U I jI     

*

| U |


 ,  

defines active and reactive CV 
 

(22)        a a

P
I F 2

I = m U
| U |

 ,     
2j

r

Qe
jI



r 2
I = m U

| U |
 

   

and provides a complete decomposition of the total CV to 
the Fryze’s active and inactive current vectors 
 

(23)    F r u F F

 

I = I + I + I I  Ia a

inactive curent
Fryze

  ,         F r uI I + I . 

In the unbalanced mode, the power equation has three 
components, and PF is calculated in terms of components 
of the Fryze’ expansion (23) [2] 

 

(24)                      2 2 2 2
B uS P Q D   ,  

(25)         
2 2 2

a

B u a

P P

S P Q D
   

  
F

2 2
F F

| I  |

| I |  | I |   
 .  

 
      Fryze’s active current is the solution of a conditional 
extremum problem with the objective function being equal 

to the heat loss (by 1 ohm) 2I | I |  ( )F =  with constraint 
*U I U I( , ) ( )e e PÂ = Â = . Active current aFI  supplies 

energy with minimal losses, its active power equals that of 
the total current.   

 
Pulsing mode and pulsed current 

We get another orthogonal decomposition of the total CV, 
which is associated with IP pulsations. It follows from (11) 
that in the case when the total CV is orthogonal to the CC 

vector *U , the pulsations are absent  
 

(26)                  *I U            *( ) 0N  I, U . 
This mode is called non-pulsed. If the mode is pulsed 

( 0N  ), then the orthogonal projection of the total CV on 
the CC voltage vector defines the 3d-component of the 
current 

(27)     
*

*
* * * *

* 2

( )
( )

( ) | |p

m

I,U
I = U = U U m

U,U U
p

p

I

N
N U U I 


  
  .  

The current component thus introduced has the same PP 
as the total current  

(28)          
2

* * *
2 2

( , ) ( )
U

N N
N

U U
  pI U U U U U
    . 
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So, the current component (27) (being the orthogonal 
projection) has the minimal norm (the rms value) among all 
currents, which have the same PP as the total CV at the 
given voltage. Component (27) is called pulsed current [3]. 
The orthogonal complement to the total current n  pI I - I  

of the introduced current components (27) does not cause 
pulsation and is called non-pulsed current. It is clear that 

*( , ) 0 n nI U I U . We have the orthogonal 

decomposition of the total current  
 

(29)               ( )p n p    pI I I I I - I .                      
   

The results obtained are valid both for 3-wire and 4-wire 
circuits. At asymmetric voltage the balance and non-pulsed 
modes do not match.  

 

The two-dimensional subspace of the energy 
processes in the three-wire circuit 

In a three-wire system the voltage measurements relative 
to artificial grounding point, together with the Kirchhoff’s first 
law, give [2] 

  

(30)           0a b cU U U     ,        0a b cI I I      .  
 

Thus, the sinusoidal energy processes in the three-wire 
section , ,a b c  of the 3-wire circuit, characterized by  

3d-phasors X , which are orthogonal to the zero-sequence 

ort (1,1,1) 30e  :  

(31)          ( ) 3 0a b cX X X    0 0X,e X e    . 

                                     
These 3d-phasors form a two-dimensional subspace. The 

positive (PS) and negative sequence (NS) orts    

(32)   
1

(1, , )
3

 1e   ,       
1

(1, , )
3

 2e  ,   

  ( 2 / 3je   , *1 0    , 2  , 1  ) 
 

define an orthonormal basis of this subspace [3]. 
 Any vector satisfying (31) is uniquely represented by 

their symmetrical coordinates in this basis. In particular, the 
orthogonal decomposition of voltage and current vectors in 
the basis (32)  

(33)                    1 2 2U U 1 2 1U U + U e + e  ,    

(34)                     1 2 2I I 1 2 1I I + I e + e     
                                

defines the SCP and PP in symmetric coordinates 
 

(35)         * *
1 1 2 2S U I U I +   ,       1 2 2 1N U I U I +       

 

SCP and PP are defined as the PS and NS currents.  
  

Orthonormal bases of losses and pulsations 
The basis of symmetric coordinates is not unique. Let 

us define two bases, for which we shall analyze the losses 
and pulsations. The 3d-phasor of interphase voltages 

3( ) 0U = U e  orthogonal to the CC voltage 3d-phasor  
 

(36)          *( , ) 3( ) 00U U U U U e U    
   .              

 

This allows us to define two orthonormal bases [2]: the 
basis of losses and CC to it the basis of pulsations  

 

(37)               { , } m m ,     * * *{ , } m m .                
 

Here m U | U |  and *  0m m e  are orts of phase and 

CC interphase voltage vectors; * * *m U | U |  and 

*   0m m e  are orts of CC phase and interphase VV.  

Orts of these bases are related by vector-matrix 
relations 

 

(38)   
*

*

 
 

    
     
    

*

m m

m m

 









,  
*

*

 
 
    

        
*

mm

mm

 









;      

where the complex numbers ( )  m,m m m  ,    
* ( ) = m m m m 

  ,   m m m m  
  , and        

satisfy the condition 2 2| | | | 1    .  

Nondimensional complex value   
 

(39)                2 2
2 2(1 ) (1 )U Uk k        

       

characterizes the degree of asymmetry of VV. Here 

2 1 2Uk U U is the voltage unbalance factor (VUF) for NS.  

If the voltage is symmetrical PS 1 1U = eU  

then 0  , j  , and within a phase factor the entered 

orts (37) coincide with the orts of PS and NS (32) 
 

 (40)   1m e ,   j 2m e ,  * *( ) 1 2m e e ,  j *
1m e . 

  
Decomposition of the total current in the bases of 
losses and pulsations 

In the basis of losses { } m, m  the CV expansion  

(41)            b u b uI I I I
 

       
 

b u

m
I I + I m m

m
   




.         

is defined by the coordinates 
 

(42)            bI S U * *I m  ,     0uI D U *I m 


 .  
     

Here 0 ( )D   0I U e  is the projection of the imbalance 

power vector  D U I on ort 0e  [3].  

The expansion (41) is characterized by the pair of 

complex power bS I U*  , 0 uD I U  , and gives a quadratic 

expansion of the apparent power (equation of losses)   
 

(43)       2 2 2| | | | | |b uI = I + I  2 2 2
0| | | |BS S D *   

The basis of pulsations * determines the 
decomposition of the total current to the non-pulsed and 
pulsed currents 

(44)      p n p nI I I I
 

     
 

*
* *

p n *

m
I = I + I = m m

m
   




 .   

The coordinates of the expansion (44)  

 (45)       *( )pI  I,m = I m  ,    ( )nI  *I,m = I m
 

  
 

determine phasors of pulsed power and non-pulsed power 
    

(46)            pN I U    ,            nK I U   .     
 

Orthogonal decomposition of the total current (44) gives 
the Pythagorean theorem for the currents and the 
equivalent power equation for the pulsed mode [3] 

 

 (47)      2 2 2| | | | | | p nI I I , 2 2 2| | | |BS N K    .  
 

Under an asymmetric voltage equations (43) and (47) do 
not coincide. For the introduced bases (37) the matrices  

 

(48)        
* 

 
 

  
 




              
*

*  
 

 
   




          



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 7/2013                                                                                          57 

determine the transformations between the coordinates of 
3d-phasors without 0–sequence.  
.  

*U

bI

 *F F

uI I

*m

m

U

*U

nI

pI

m
m

U
 

 
Figure 1. Decomposition of the total CV in the bases of losses 

and pulsations 
 

In the bases (37) coordinates of the CV are  related by 
vector - matrix relations 

 (49)      

*

*
n b

p u

I I

I I

 
 

    
          

 
 



,    
*

nb

pu

II

II

 
 

    
     

     

 
 



.    

Matrices (48) connect the corresponding pairs of powers 

( 0,S D*  ) and ( ,N K  ) too [3]. 
 

Straightforward PP compensation 
   According to the PP method [1] the load current is divided 
into the current compensator and the current source 
 (50)       I I IL S C= +              ( I I I I,C p S n= = ). 

in correspondence with the orthogonal decomposition (44). 
Using the matrix-vector contact (49), we get the 
representation of the load current (in coordinate form) in the 
basis of losses as 

 (51)                  



**

*

L S C

pb n

pu n

II I

II I



    

      
     

I I I

 
 

 
          

Compensator current 

 (52)                     
*

*

( )

( )
C b p

C
C u p

I

I



  

    
   

I
I

I


                       

 
contains balanced and unbalanced components  
 

(53)               *( )C b pII        *( )C u pII  .                
 

The complex power of compensator current is equal to 
  

(54)              
* * *( )С C b p

N

S U I U N     I


  .              

In the symmetrical components factors (54) are calculated 
as 

* * * 2
1 1( ) 2U U U  m m ,          2 1 1 2N I U I U      , 

that for the complex power of compensator current gives 

(55)        
2 2

* 1 2 2 1 2 2
2 2

2 2

2( ) 2( )

1 1

C C

U U
С

U U

P Q

Pk P Q k Q
S j

k k

 
 

  
              

Here *
1 1 1 1 1S U I P jQ     , *

2 2 2 2 2S U I P jQ      are the 

complex powers of the PS and NS of initial mode. 

In the circuit considered, active powers must be balanced. 
In order to provide the initial energy consumption for the 
load with the active power (in the new mode)   

1 2LP P P  , 

the PP compensator must generate energy with active 
power 

(56)                   
2

1 2 2
2

2

2( )

1
U

C L S
U

Pk P
P P P

k


  


   

in addition to  the source energy having the active power 
2 2

1 2 1 2 2 2( - ) ( - ) (1 ) (1 )S U UP P P P P k k    . 
 

Optimum PP compensation  

Active Fryze current aIaFI m supplies energy to the 

load with the same (active) power as the total current and 
with minimal losses in source circuit.  

However, under asymmetrical voltage IP of active 
current it contains a pulsating component 

( ) ( )p
aF aFI I m m  ( 0P U aFI m =  ) [3].  

b FS aI mI( ) aI= =

*m

m

paFI( )

m

m

SI

naFI( )

ap pFI = - I (( ) )

I

  
Figure 2. Addition of the unbalanced current to the active current 

in order to eliminate pulsation 
 

Let us find such current in source circuit SI  that does not 

contain any pulse current with its current balanced 
component being equal to the active current (Fig. 2.) 

 

(57)          
0

( ) ( ) 0S SI I m mp
  ,      ( )b S aFI I .      

We denote the unknown unbalanced component of  
source current, which is to eliminate the pulsating 

component of active current, as ( )u I= =SI I m   .  

The decomposition of this source current in the basis of 
losses is 

(58)         ( ) ( )S S S aFI I I I I m mb u aI I         .    
 

   From (50) and (51) it  follows  ( ) 0  S aFI m I I m 
 . 

 It gives  

 (59)         ( ) ( ) ( ) 0m m m m m m ma aI I I I
 

   
 

  
    

    

 and allows to find the unknown phasor of unbalanced 

current  ( ) aI I    . 

Thus (in the source circuit), the required total CV and 
the corresponding unbalanced current are uniquely 
determined by the active current value aI   

 

(60)              * *( )SI m mS aI I      ,   | | aI SI ; 

(61)              ( )aI I    I m m      ,   | | aI  I .  
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The pulsating component of the unbalanced current 
( ) pI we have found is directed oppositely to the pulsating 

component of the active current  
 

(62)       ( ) ( ) ( )aI I    p aF pI = m m m m = I  
 .  

The active current ( , )aF SI I m m  is the orthogonal 

projection of the non-pulsed source current we have found 

SI  to the ort m .  

FI

I aFI

L aF FI I + I
C FI I - I

S aF I I I

 
 
Figure 3.  Optimal non-pulsed mode at asymmetrical voltage 

 
The source current contains the active current and 

additional unbalanced current, which compensates 
pulsation caused by the active current (Fig. 3).  

It follows from (51) that the source circuit current can be 
decomposed as   
(63)    ( )

L C

S aF aF L C        F F

I I

I I I I I I I I + I  .  

The load current is equal to the source circuit current prior 
to compensation L aF  FI I I .The current of compensating 

device (CD) has two components 
 (63)                       C FI I + I .                                          

The first component of the compensator current  

(64)         ( ) r uI I      F r uI I I m m 
    

compensates the Fryze’s non-active current that appears in 
the circuit of asymmetrical (unbalanced) load.  
The other (unbalanced) component   

 (65)                *( )aI I   I m m      

is introduced into the source circuit for compensating the 
active current pulsation of IP in the source circuit. 

 Among all non-pulsed currents that supply energy with 
the initial active power | |aFI aP U U I    the non-pulsed  

current SI   we have found has a minimum rms value   and 

gives the solution of the conditional extremum problem  
2

arg min| |



S

I

I I
  

Admissible region of the conditional extremum problem 

(66)                { ( [ ] ) & ( 0)}e P   *I |  U I I U �  

ensures it. 
The compensator does not requires additional energy 

generation by active means. It follows from (60) that after 
compensation the PF value in the source circuit  

 (67)          2 2
2 2| | | | (1 ) (1 )after U Uk k     aF SI I        

 

does not depend from the load unbalance and is due only to 
the degree of voltage asymmetry. The PF value can be pre-
calculated using VUF. In the range of change of the VUF 

2 [0;5%]Uk   the value   differs from unity in the third 

decimal place. If the pre-calculated PF value after  is 

less than required, the voltages should be symmetrized. 
The method for calculating the parameters of the –
compensator at LC elements for any compensating current 
(without active current) is proposed in [6, 8]. 
 

Conclusions  
The compensation method proposed above eliminates 

completely, for any unbalanced load, the IP pulsation under 
asymmetrical voltage.  

The proposed compensator provides the non-pulsed 
energy supply with the highest possible PF and with the 
same average (active) power as the initial current. 

The PF value is independent from load unbalance and 
is determined only by the degree of voltage asymmetry. 
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