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Abstract. In the present work, a higher order linearized model has been developed to assess the small signal excursion characteristics of an 
asymmetrical six-phase synchronous generator system connected to infinite bus using eigenvalue criterion. The stability of the system under small 
perturbation of different variables has been examined from the placement of eigenvalues. The work establishes an association between generator 
and loading parameters with pair of eigenvalues, thus the system stability. Further a participation factor analysis has also been carried out to identify 
the effect of dynamic state variable on a given mode or eigenvalue.  
  
Streszczenie. W artykule zaprezentowano linearyzowany model wyższego rzędu umożliwiający analizę asymetrycznego sześciofazowego 
generatora asynchronicznego podłączonego do nieskończonej linii. Badano stabilność systemu przy małych zakłóceniach. (Analiza stabilności 
małego sygnału sześciofazowego generatora synchronicznego) 
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Introduction 

A substantial body of work spread over last two decades 
indicates the technical and economic viability of using 
number of phases higher than three in multi-phase AC 
machines for application in marine ship, thermal power 
plant, electric vehicles and nuclear power plants etc. Multi-
phase drive possesses several advantages over 
conventional three-phase drive system, such as reducing 
the amplitude and increasing the frequency of torque 
pulsations, reducing the rotor harmonic currents, reducing 
the current per phase without increasing the voltage per 
phase, lowering DC link current harmonics, increased 
power to weight ratio, better performance and higher 
reliability [1-3]. In recent times, because of several benefits 
of multi-phase AC machine, interest has re-emerged in the 
use of multi-phase generators in conjunction with various 
prime movers [4-6]. Permanent magnet multi-phase 
synchronous generators [7] may become a viable solution 
for the direct driven applications in wind powered plants, 
while multi-phase generators may have a prospect for 
application in stand-alone generating systems of rural areas 
[4-8]. It needs to be emphasized though there is no 
evidence at present of any industrial uptake of such 
solutions. Recent work shows the feasibility of six-phase 
synchronous generator for stand-alone renewable energy 
generation system in conjunction with hydro power plant [5, 
6, 8]. In these studies, modeling and steady state 
performance analysis of six-phase synchronous generator 
for energy generation has been discussed.  The six-phase 
generator can either be used as an autonomous energy 
source or supplying power to utility grid through an 
interconnecting six-phase to three phase transformer, which 
raises the issues of machine stability. Among stability, small 
signal stability is an important one. To the best of author’s 
knowledge, the small signal stability analysis of six-phase 
synchronous generator connected to utility grid have not 
been carried out, although the recent development in 
electronic power convertors has overcome the limitation of 
connecting six-phase generator with conventional three-
phase utility grid. 

The steady state stability is and has been a concern of 
electrical machine designer, power system engineer. Out of 
various aspects of stability studies, an important one is 
small perturbation about the equilibrium point. It has long 
been observed that the electrical machines operating at 
constant nominal speed might display small signal 
instability. The well established standard procedures for 
analysis of small signal stability of some operating point is 

to examine the linearized model of electrical machine which 
describes small excursions from fixed operating condition. 
Literature is available on stability of three-phase 
synchronous machine using various methods like root 
locus, Nyquist criterion and eigenvalue technique. The 
small perturbation characteristics of a single three-phase 
machine supplying an infinite bus were explored using 
frequency response method [9]. In this, the effects of 
excitation system on stabilizing requirements were 
presented. A state space eigenvalue program was 
presented for the stability study of three-phase regulated 
synchronous machine [10]. A comparative study of 
eigenvalue analysis capabilities of two simulation software’s 
was carried out in [11]. The effect of large synchronous 
motor starting on an isolated steel plant was investigated to 
understand the transient stability limits of the cogeneration 
system in [12]. In this, the effect of voltage fluctuations was 
not considered. A model for nine-phase salient pole 
synchronous machine is developed by vector space 
decomposition to reduce the machine into a usual d-q 
equivalent circuit model and seven non-torque producing 
circuit in [13]. Using eigenvalue method, small signal 
stability analysis of six-phase induction machine was 
investigated by considering the effect of common mutual 
leakage reactance [14]. Duran et al have studied the 
stabilizing effect of harmonic injection in five phase 
induction motor drive using bifurcation theory, and 
concluded that the technique enhances torque and stability 
of the machine [15].  

The behavior of six-phase synchronous generator can 
be described by a set of non-linear differential equations. In 
this work, a thirteenth order linearized model for a six-phase 
synchronous generator with excitation system has been 
developed. In the proposed model, effect of mutual leakage 
reactance between the two three-phase stator winding sets 
have not been included as the two winding sets are at thirty 
electrical degree apart. The stability of the six-phase 
generator connected to infinite bus under small excursion of 
any machine or loading variable has been examined at a 
time from the placement of the eigenvalues. The 
participation factor analysis is also carried out to identify the 
effect of dynamic variable on a given mode or eigenvalue. 

  
Mathematical model 
(a) Synchronous Machine model  

The stator of the six-phase synchronous machine has 
six uniformly distributed phase windings. These phases are 
sinusoidally distributed, and are configured to form two 
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three-phase wye connections with neutral isolated to 
prevent the flow of physical fault and triplen harmonic 
current between them. The three-phases of a wye set are 
120° apart from each other and the magnetic axes of two 
wye sets (i.e ‘abc’ and ‘xyz’) are at an angle of 30° electrical 
from each other. The basic two pole, salient pole, six-phase 
synchronous machine is shown in Fig.1. The rotor circuit 
has a field winding (fr) and a damper winding (Kd) along d-
axis and two damper windings (Kq1) and (Kq2) along q-axis. 
The instant shown is the time when ‘a’ phase of set ‘abc’ 
coincides with d-axis. All quantities are referred to ‘abc’ 
winding set. 

The voltage equations [6, 16, 17] in the rotor reference 
(considering generator convention) frame are given by:  
(1)  vୢଵ ൌ 	െrଵiୢଵ െ	ሺω୰ ωୠ⁄ ሻψ୯ଵ ൅ ሺ1 ωୠ⁄ ሻpψୢଵ  
(2)  v୯ଵ ൌ 	െrଵi୯ଵ ൅	ሺω୰ ωୠ⁄ ሻψୢଵ ൅ ሺ1 ωୠ⁄ ሻpψ୯ଵ  
(3)  vୢଶ ൌ 	െrଶiୢଶ െ	ሺω୰ ωୠ⁄ ሻψ୯ଶ ൅	ሺ1 ωୠ⁄ ሻpψୢଶ  
(4)  v୯ଶ ൌ 	െrଶi୯ଶ ൅	ሺω୰ ωୠ⁄ ሻψୢଶ ൅	ሺ1 ωୠ⁄ ሻpψ୯ଶ  
(5)  v୏୯ଵ ൌ 	 r୏୯ଵi୏୯ଵ ൅	ሺ1 ωୠ⁄ ሻpψ୏୯ଵ    
(6)  v୏୯ଶ ൌ 	 r୏୯ଶi୏୯ଶ ൅	ሺ1 ωୠ⁄ ሻpψ୩୯ଶ  
  

 
Fig1. Schematic diagram of six-phase synchronous generator 

 

(7)    v୏ୢ ൌ 	 r୏ୢi୏ୢ ൅	ሺ1 ωୠ⁄ ሻpψ୩ୢ    
(8)    v୤୰ ൌ 	 r୤୰i୤୰ ൅ 	ሺ1 ωୠ⁄ ሻpψ୤୰    
  

Where flux equations are 
(9)    ψୢଵ ൌ െX୪ଵiୢଵ ൅ X୪୫ሺെiୢଵ െ iୢଶሻ െ X୪ୢ୯i୯ଶ ൅
X୫ୢሺെiୢଵ െ iୢଶ ൅ i୏ୢ ൅ i୤୰ሻ    
(10) 	ψ୯ଵ ൌ െX୪ଵi୯ଵ ൅ X୪୫൫െi୯ଵ െ i୯ଶ൯ ൅ X୪ୢ୯iୢଶ ൅
X୫୯ሺെi୯ଵ െ i୯ଶ ൅ i୏୯ଵ ൅ i୏୯ଶሻ   
(11)  ψୢଶ ൌ െX୪ଶiୢଶ ൅ X୪୫ሺെiୢଵ െ iୢଶሻ ൅ X୪ୢ୯i୯ଵ ൅
X୫ୢሺെiୢଵ െ iୢଶ ൅ i୏ୢ ൅ i୤୰ሻ    
(12)  ψ୯ଶ ൌ െX୪ଶi୯ଶ ൅ X୪୫൫െi୯ଵ െ i୯ଶ൯ െ X୪ୢ୯iୢଵ ൅
X୫୯ሺെi୯ଵ െ i୯ଶ ൅ i୏୯ଵ ൅ i୏୯ଶሻ   
(13)  ψ୏୯ଵ ൌ X୪୏୯ଵi୏୯ଵ ൅ X୫୯ሺെi୯ଵ െ i୯ଶ ൅ i୏୯ଵ ൅ i୏୯ଶሻ  
(14)  ψ୏୯ଶ ൌ X୪୏୯ଶi୏୯ଶ ൅ X୫୯ሺെi୯ଵ െ i୯ଶ ൅ i୏୯ଵ ൅ i୏୯ଶሻ  
(15)  ψ୏ୢ ൌ X୪୏ୢi୏ୢ ൅ X୫ୢሺെiୢଵ െ iୢଶ ൅ i୏ୢ ൅ i୤୰ሻ  
(16)  ψ୤୰ ൌ X୪୤୰i୤୰ ൅ X୫ୢሺെiୢଵ െ iୢଶ ൅ i୏ୢ ൅ i୤୰ሻ  
(17)  pሺω୰ ωୠ⁄ ሻ ൌ 	 ሺ1 2H⁄ ሻሺTୣ ୫ െ	Tୱ୦ሻ                
 

where, Xlm is common mutual leakage reactance and Xldq is 
the cross-saturation coupling between the two stator 
windings, and is given by: 
(18)  X୪୫ ൌ 0.866 ∗ ሺX୪ୟ୶ ൅	X୪ୟ୷ሻ  
(19)  X୪ୢ୯ ൌ 0.5 ∗ ሺX୪ୟ୶ ൅	X୪ୟ୷ ൅ 	2 ∗ X୪ୟ୸ሻ 
 

Torque equation is  

(20)  Tୣ ୫ ൌ ሾψ୫ୢ൫i୯ଵ ൅ i୯ଶ൯ െ ψ୫୯ሺiୢଵ ൅ iୢଶሻሿ 
where    ψ୫ୢ   and ψ୫୯	are mutual flux linkages along d- 
and q-axes respectively 
 

(b) IEEE type-1 Excitation system model 
Excitation model [18] considered for the purpose of this 
work is of IEEE type-1. 
(21)  Tୣ pሺE୤ୢሻ ൌ 	െሺKୣ ൅	SୣሺE୤ୢሻሻE୤ୢ ൅ V୰          

(22)  TୟpሺV୰ሻ ൌ 	െV୰ ൅	KୟR୤ ൅ ሺ
୏౗୏౜
୘౜
ሻE୤ୢ ൅ KୟሺV୰ୣ୤ െ V୲ሻ  

(23)  T୤pሺR୤ሻ ൌ 	െR୤ ൅	
୏౜
୘౜
E୤ୢ     

  is a differential operator ݌  

 
 

Fig. 2. IEEE type-1 excitation system 
 

Linearized state space model 
In this, a Taylor’s expansion method has been 

implemented about a fixed steady state operating condition. 
According to this any variable may be written in its Taylor 
expanded form [17], as given by: 

݂ሺݔ௡ሻ ൌ 	݂ሺݔ௡଴ሻ ൅ ݂ᇱሺݔ௡଴ሻ∆ݔ௡ ൅	ቆ
݂ᇱᇱሺݔ௡ሻ

2!
ቇ ௡ଶݔ∆ ൅	…. 

where  x୬ ൌ 	 x୬଴ ൅	∆x୬      and  x୬଴ is the fixed 
operating point. The higher order terms can be neglected to 
study small excursion about a fixed steady state operation 
point, that is 

 

(24) ∆fሺx୬ሻ ൌ 	 f ᇱሺx୬଴ሻ∆x୬ 
 

 Using equation (24), linearization of equations (1-23) 
with current as state variable can be written in the matrix 
form as:  
 

(25) EpX = FX + U    
  

where,  
Input matrix  
ܜ܃ ൌ ሾ0		0		0		0		0		0		0		0		0		T୪		0		0		–

୏ୟ୚୰ୣ୤

୘ୟ
		0ሿ  

State variable matrix 

ܜ܆ ൌ ൤i୯ଵ		iୢଵ		i୯ଶ		iୢଶ			i୏୯ଵ		i୏୯ଶ		i୤୰		i୏ୢ	 		
∆ω୰

ωୠ
		δ		V୤	V୰	E୤ୢ൨ 

 

۳ ൌ	 ቎

W୮ Y୮ L୮
Q୮ S୮ M୮

X୮ Z୮ N୮
቏, ۴ ൌ 	 ൥

W୩ Y୩ L୩
Q୩ S୩ M୩
X୩ Z୩ N୩

൩ 

where  

ܘ܅ ൌ
1
ωୠ

ۏ
ێ
ێ
ێ
െ൫X୯ۍ ൅ Xୣ൯ 0 െX୫୯ 0

0 െሺXୢ ൅ Xୣሻ 0 െX୫ୢ
െX୫୯ 0 െ൫X୯ ൅ Xୣ൯ 0
0 െX୫ୢ 0 െሺXୢ ൅ Xୣሻے

ۑ
ۑ
ۑ
ې

 

 

ܘۿ ൌ
1
ωୠ

ۏ
ێ
ێ
ێ
ێ
ۍ
െX୫୯ 0 െX୫୯ 0
െX୫୯ 0 െX୫୯ 0
0 െX୫ୢ 0 െX୫ୢ
0 െX୫ୢ 0 െX୫ୢ
0 0 0 0
0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ې

 

    

ܘ܇ ൌ
1
ωୠ

ۏ
ێ
ێ
ێ
X୫୯ۍ X୫୯ 0 0 0 			൫X୯ ൅ Xୣ൯iୢଵ଴ ൅ X୫୯iୢଶ଴
0 0 X୫ୢ X୫ୢ 0 െሺXୢ ൅ Xୣሻi୯ଵ଴ െ X୫ୢi୯ଶ଴
X୫୯ X୫୯ 0 0 0 			൫X୯ ൅ Xୣ൯iୢଶ଴ ൅ X୫୯iୢଵ଴
0 0 X୫ୢ X୫ୢ 0 െሺXୢ ൅ Xୣሻi୯ଶ଴ െ X୫ୢi୯ଵ଴ے

ۑ
ۑ
ۑ
ې
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ܘ܁

ൌ
1
ωୠ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
X୪୏୯ଵ ൅ X୫୯ X୫୯ 0 0 0 X୫୯iୢ଴

X୫୯ X୪୏୯ଶ ൅ X୫୯ 0 0 0 X୫୯iୢ଴
0 0 ሺX୪୤୰ ൅ X୫ୢሻ X୫ୢ 0 െX୫ୢi୯଴
0 0 X୫ୢ X୪୏ୢ ൅ X୫ୢ 0 െX୫ୢi୯଴
0 0 0 0 2Hωୠ 0
0 0 0 0 0 ωୠ ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

 
where      iୢ଴ ൌ 	 iୢଵ଴ ൅ iୢଶ଴   and i୯଴ ൌ 	 i୯ଵ଴ ൅ i୯ଶ଴ 
 
ܘۺ ൌ 	 ሾ0ሿଷ∗ଷ,  ܘۻ ൌ 	 ሾ0ሿ଺∗ଷ,   ܘ܈ ൌ 	 ሾ0ሿଷ∗଺ 
 

ܘۼ ൌ 	 ൥
െ1 0 0
0 െ1 0
0 0 െ1

൩,   ܘ܆ ൌ 	 ൥
0 0 0 0

M121 M122 0 0
0 0 0 0

൩ 

 

where    

 M121 ൌ െ	
୏౗∗୴ౚభ౥∗ଡ଼౛
୘౗∗୴౪౥∗னౘ

,   M122 ൌ െ	
୏౗∗୴౧భ౥∗ଡ଼౛
୘౗∗୴౪౥∗னౘ

 
 

ܓ܅ ൌ

ۏ
ێ
ێ
ێ
ۍ

െR െkሺXୢ ൅ Xୣሻ 0 െkX୫ୢ
k൫X୯ ൅ Xୣ൯ െR kX୫୯ 0

0 െkX୫ୢ െR െkሺXୢ ൅ Xୣሻ
kX୫୯ 0 k൫X୯ ൅ Xୣ൯ െR ے

ۑ
ۑ
ۑ
ې

 

 

ܓۿ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Qk41 Qk42 Qk41 Qk42
0 0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ې

 

 

where     
k ൌ 	ω୰୭ ωୠ⁄ ,  Qk41 ൌ 	 ሺX୫ୢሺെiୢ଴ ൅ i୤୰଴ሻ ൅ X୫୯iୢ଴ሻ,  
Qk42 ൌ 	 ሺെX୫ୢi୯଴ ൅ X୫୯i୯଴ሻ 
 

ܓ܇ ൌ

ۏ
ێ
ێ
ۍ

0 0 kX୫ୢ kX୫ୢ Yk14 Yk15
െkX୫୯ െkX୫୯ 0 0 Yk24 Yk25
0 0 kX୫ୢ kX୫ୢ Yk34 Yk35

െkX୫୯ െkX୫୯ 0 0 Yk44 Yk45ے
ۑ
ۑ
ې
 

where 
Yk15 ൌ Riୢଵ଴ െ kሺXୢ ൅ Xୣሻi୯ଵ଴ െ kሺX୫ୢi୯ଶ଴ሻ ൅ vୢଵ଴ 
Yk25 ൌ െRi୯ଵ଴ െ k൫X୯ ൅ Xୣ൯iୢଵ଴ െ kሺX୫୯i୯ଶ଴ሻ െ v୯ଵ଴ 
Yk35 ൌ Riୢଶ଴ െ kሺXୢ ൅ Xୣሻi୯ଶ଴ െ kሺX୫ୢi୯ଵ଴ሻ ൅ vୢଶ଴ 
Yk45 ൌ െRi୯ଶ଴ െ k൫X୯ ൅ Xୣ൯iୢଶ଴ െ kሺX୫୯iୢଵ଴ሻ െ v୯ଶ଴ 

ܓ܁ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ۍ

r୏୯ଵ 0 0 0 0 0
0 r୏୯ଶ 0 0 0 0
0 0 r୤୰ 0 0 0
0 0 0 r୏ୢ 0 0

െX୫୯iୢ଴ െX୫୯iୢ଴ X୫ୢi୯଴ X୫ୢi୯଴ 0 ሺSk45ሻ
0 0 0 0 െω	ୠ 0 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Sk45 ൌ െiୢଵ଴ൣX୫୯iୢ଴ െ X୫ୢሺiୢ଴ െ i୤୰଴ሻ൧ െ i୯ଵ଴ൣሺX୫ୢ െ X୫୯ሻi୯଴൧ െ iୢଶ଴ൣX୫୯iୢ଴ െ
X୫ୢሺiୢ଴ െ i୤୰଴ሻ൧ െ i୯ଶ଴ൣሺX୫ୢ െ X୫୯ሻi୯଴൧  

ܓۺ ൌ 	 ൥
0 0 0
0 0 0
0 0 0

൩,  ܘۻ ൌ 	

ۏ
ێ
ێ
ێ
ێ
ۍ
0 0 0
0 0 0
0 0 െ

୰౜ౚ
ଡ଼ౣౚ

0 0 0
0 0 0
0 0 0 ے

ۑ
ۑ
ۑ
ۑ
ې

ܓ܈   , ൌ 	 ൥
0 0 0 0 0 0
0 0 0 0 K129 0
0 0 0 0 0 0

൩,  

ܓ܆ ൌ 	 ൥
0 0 0 0

K121 K122 0 0
0 0 0 0

൩ 

where   

K121 ൌ 	െ
Kୟ
Tୟ
൬
vୢଵ଴
v୲଴

Rୣ ൅
v୯ଵ଴
v୲଴

ω୰଴

ωୠ
Xୣ൰ 

K122 ൌ 	െ
Kୟ
Tୟ
൬
v୯ଵ଴
v୲଴

Rୣ െ
vୢଵ଴
v୲଴

ω୰଴

ωୠ
Xୣ൰ 

K129 ൌ 	െ
Kୟ
Tୟ
൬
v୯ଵ଴
v୲଴

Xୣ
ωୠ

iୢଵ୭ െ	
v୯଴
v୲଴

Xୣ
ωୠ

i୯ଵ଴൰ 

ܓۼ ൌ 	

ۏ
ێ
ێ
ێ
ێ
ێ
െۍ

1
T୤

0
K୤
T୤
ଶ

Kୟ
Tୟ

െ
1
Tୟ

െ
KୟK୤
TୟT୤

0
1
T୤

െ
Kୣ ൅ SୣሺE୤୰ሻ

Tୣ ے
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

SୣሺE୤୰ሻ ൌ 	െKୣ ൅ 0.0039 ∗ expሺ1.555 ∗ E୤୰଴ሻ /Tୣ  
 

Equation (25) may be written in the standard form as: 
(26)                    pX = AX + BU   
where  
A = E-1F and B = E-1   

Variables in rotor reference and synchronously rotating 
reference frame are related by 

൤
f୯
fୢ
൨ ൌ 	 ቂcosδ െsinδ

sinδ cosδ
ቃ ቈ
f୯ୣ

fୢ
ୣ቉ 

 

Eigenvalues and machine parameters 
 The roots of characteristic matrix [A], referred to as 
characteristic roots, latent roots or eigenvalues, have been 
calculated using a computer program. As the state space 
model, given by equation (26), of six-phase synchronous 
generator with excitation system is described by thirteen 
states variables, thirteen eigenvalues were obtained. Out of 
these thirteen eigenvalues, three are in complex conjugate 
pairs and remaining are real negative numbers. Eigenvalue 
may be a real number or complex conjugate pair. A positive 
real eigenvalue corresponds to periodic instability, negative 
real value indicates forced back to the operating point, zero 
means stays at the position of operating point, complex 
number with positive real part represents oscillatory mode 
with increasing amplitude, complex number with negative 
real part means oscillations with decaying amplitude about 
the fixed operating point and only imaginary values 
represents oscillations with constant amplitude around the 
fixed operating point.  
 For the purpose of validation of the developed model, 
the proposed approach was applied on two separate six-
phase generators, and small signal stability analysis carried 
out. Similar behavior in both the cases was observed. 
Whereas the results presented in this paper are of 
prototype laboratory test machine-2 only. The parameters of 
the two machines and IEEE type-1 excitation system are 
given in Appendix. Different eigenvalues have been 
calculated by varying the generator parameters like 
resistance /reactance of stator, rotor and inertia constant of 
the machine about the quiescent operating point when (i) 
both the winding were subjected to full load at 0.8 lagging 
power factor and (ii) only one winding set is subjected to full 
load at 0.8 lagging power factor. This provides an 
association of the machine parameters and eigenvalues. 
The state space model given by equation (26) can be easily 
modified for a six-phase synchronous generator without 
excitation system by eliminating last three rows and 
columns of the characteristic matrix [A], accordingly the 
model is reduced to tenth order. The eigenvalue variation 
has also been determined with and without excitation 
system. Some results are tabulated in Table 1 & 2, and are 
plotted in Fig. 3(a-d) after normalizing the tabulated values 
with the corresponding nominal machine parameter 
(marked with *).  
The normalized values are defined as 
  

	%NV ൌ 	
EVCP
EVRP

∗ 100 

where 
   % NV = Percentage normalized value 
EVCP = Eigenvalue with change in parameter 
EVRP = Eigenvalue with reference (rated) parameter 
 Here, the complex conjugate pairs affected by change in 
stator parameter are called stator eigenvalue-I and stator 
eigenvalue-II as shown in Table 2. The real part of the 
stator eigenvalues becomes more negative with the 
increase in stator resistance or with the reduction in stator 
leakage reactance; this suggests lower time constant and 
higher system stability. It is also evident from the ratio 
comparison shown in Table 1, that the ratio of absolute real 
stator eigenvalue-I to imaginary stator eigenvalue-I follow 
the same trend as that of the ratio of stator resistance to 
stator leakage reactance and higher value of this ratio 
further suggests higher rate of decay and enhanced 
machine stability.  
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Fig. 3(a)  Variation of Eigenvalues with change in   Fig. 3(b) Variation of Eigenvalues with change in stator  
  stator resistance       leakage reactance 
 

  
 Fig. 3(c) Variation of Eigenvalues with change in   Fig. 3(d) Variation of Eigenvalues with change in rotor leakage  
        rotor resistance only     reactance only 

 
 

 
 

Fig. 4 Variation of rotor eigenvalues with change in reactive load  on the generator with excitation system 
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Table 1. Ratio comparison of ratio of stator resistance to stator reactance with the ratio of |real eigenvalue-I| to |Imaginary eigenvalue-I| 
without excitation system 
Stator Resistance, 
‘rs’(p.u) 

Stator leakage Reactance, 
‘Xls’(p.u) 

Ratio, rs/Xls Stator Eigenvalue-I Ratio, |real| /|Imag| 

0.0108* 0.009* 1.2 -375±j314 1.19420 
0.0097 0.0081 1.197 -375±j314 1.19420 
0.0119 0.0099 1.2 -375±j314 1.19420 
0.0119 0.009* 1.322 -394±j314 1.25477 
0.0097 0.009* 1.077 -357±j314 1.13690 
0.0108* 0.0099 1.0909 -358±j314 1.14030 
0.0108* 0.0081 1.333 -395±j314 1.25796 

 

Table 2. Variation of eigenvalues with the change in various generator parameters without excitation system when both the winding set are 
at full load 0.8 power factor lagging 

Equal change in stator 
resistance ‘rs’ of both 
winding sets (p.u) 

Stator Eigenvalue-I 
(rad/s) 

Stator Eigenvalue-II 
(rad/s) 

Rotor Eigenvalue 
(rad/s) 

Real Eigenvalue (rad/s) 

0.0086 -300±j314 -45±j304 -8±j62 -27408, -2395, -602, -39 
0.0097 -338±j314 -50±j303 -8±j62 -27409, -2396, -602, -39 
0.0108* -375±j314 -56±j301 -8±j62 -27411, -2396, -602, -39 
0.0119 -413±j314 -62±j299 -8±j62 -27412, -2396, -602, -40 
0.0130 -450±j314 -67±j297 -8±j62 -27413, -2396, -602, -40 
Equal change in stator 
leakage reactance of both 
winding sets, ‘Xls’ (p.u) 

    

0.0072 -469±j314 -59±j299 -9±j62 -27579, -2399, -603, -42 
0.0081 -417±j314 -57±j300 -8±j62 -27492, -2398, -603, -40 
0.009* -375±j314 -56±j301 -8±j62 -27411, -2396, -602, -39 
0.0099 -341±j314 -55±j302 -8±j62 -27334, -2395, -602, -38 
0.0108 -313±j314 -53±j302 -8±j61 -27262, -2393, -601, -37 
Change in rotor resistance, 
‘rfd’ (p.u) 

    

0.00128 -375±j314 -56±j303 -7.13±j63.31 -27410, -2396, -602, -30 
0.00144 -375±j314 -56±j302 -7.73±j62.52 -27410, -2396, -602, -34 
0.00160* -375±j314 -56±j301 -8.19±j61.69 -27411, -2396, -602, -39 
0.00176 -375±j314 -56±j300 -8.52±j60.84 -27411, -2396, -602, -45 
0.00192 -375±j314 -55±j299 -8.72±j59.99 -27411, -2396, -602, -50 
Change in rotor leakage 
reactance, ‘Xlfd’ (p.u) 

    

0.19217 -375±j314 -56±j296 -9.97±j62.09 -27477, -2396, -602, -46 
0.21619 -375±j314 -56±j299 -9.01±j61.91 -27441, -2396, -602, -42 
0.24021* -375±j314 -56±j301 -8.19±j61.69 -27411, -2396, -602, -39 
0.26423 -375±j314 -56±j303 -7.48±j61.44 -27384, -2396, -602, -37 
0.28825 -375±j314 -55±j304 -6.87±j61.18 -27361, -2396, -602, -35 
Change in inertia constant, 
‘J’ (Kg/m2) 

    

0.4224 -375±j314 -56±j301 -8.65±j70.09 -27411, -2396, -602, -38 
0.4752 -375±j314 -56±j301 -8.43±j65.54 -27411, -2396, -602, -39 
0.5280* -375±j314 -56±j301 -8.19±j61.69 -27411, -2396, -602, -39 
0.5808 -375±j314 -56±j301 -7.96±j58.39 -27411, -2396, -602, -40 
0.6864 -375±j314 -56±j301 -7.72±j55.51 -27411, -2396, -602, -40 

 
 With the change in rotor parameters and inertia 
constant, a change in the real eigenvalues of one complex 
pair has been observed. Here, this complex conjugate pair 
is called as rotor eigenvalue. Also, Table 2 indicates that 
the real part of the rotor eigenvalues is more negative with 
the increase in rotor resistance and one of the real 
eigenvalue becomes less negative with the decrease in 
rotor reactance thus suggests more system stability. 
However with the increase in stator/rotor resistance, 
machine losses will increase and with the decrease in 
stator/rotor reactance, short circuit fault current of the 
machine will increase. Thus, at design level a careful 
selection of machine parameters is required. It is worth to 
mention here that the change in stator parameters has 
negligible effect on the rotor eigenvalues. The decrease in 
the magnitude of imaginary part of the rotor eigenvalues 
with the increase in inertia constant illustrates the less 
oscillatory nature of the rotor system. 
 

Effect of machine loading 
 A correlation between the active load for a fixed reactive 
load and the rotor eigenvalues is depicted in Table 3. It 
illustrates that the rotor eigenvalues becomes positive at a 

load of 1.76 per unit, means unstable behavior of the 
machine. This value is very near to the experimental result 
(173 %) given in [5] which further validate the proposed 
model. The effect on the eigenvalues was also studied by 
varying the active power for different values of reactive 
power. It is evident that the change in stator and real 
eigenvalues is not very much significant; however, the 
variation of rotor eigenvalues is plotted in Fig. 4.  
 The real power was varied from 0 to 1.0 per unit for 
reactive power of 0, 0.3, 0.6 and 0.8 per unit respectively. 
There is a slight increase in positive magnitude of imaginary 
rotor eigenvalue with the increase in active power for a 
given reactive power output.  It illustrates higher oscillation 
frequency of the rotor system with the increase in active 
and reactive power output. The linearized model is further 
utilized to determine the transfer function of ∆Qgen/∆Ef at a 
given operating point where both the winding sets (i.e. ‘abc’ 
and ‘xyz’) have been fully loaded at 0.8 power factor 
lagging. The root locus plot of ∆Qgen/∆Efr at the specified 
operating point is shown in Fig. 5. The root locus plot also 
suggests the machine is stable, as all the poles are lying in 
the negative half of the x-axis. 
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Table 3. Variation of rotor eigenvalues (other eigenvalues remains 
unchanged) with the change in equal load on both winding sets 
without excitation system 

Total load on both winding sets 
(pu) 

Rotor Eigenvalue 
(rad/s) 

1.6 -0.117±j66.74 

1.7 -0.044±j65.17 

1.74 -0.013±j65.74 

1.76  0.0013±j66.02 

1.8  0.032±j66.59 

2.0  0.19±j69.42 
 

 
 
 
 

Participation factor 
 Participation factor is an excellent tool to identify the 
state variables that have significant participation in a 
selected mode. It is obvious, that the significant state 
variables for an eigenvalue are those that correspond to 
large values in eigenvector. But the elements of eigenvector 
are dependent on dimensions of state variables. Verghese 
et al. [19] have suggested a related but dimensionless 
measure of state variables participation called participation 
factor. It helps in the identification of how each dynamic 
variable effects a given mode or eigenvalue in a linear 
system. A participation factor is a sensitivity measure of an 
eigenvalue to a diagonal entry of the system matrix [A]. 
This is defined as [20]; 
 

 
 

Fig. 5 Root locus plot of ∆Qgen/∆Ef with excitation system 

௞௜݌ ൌ 	
௜ߣ߲
߲ܽ௞௞

 

 

where, ߣ௜ is the ith system eigenvalue, ܽ௞௞ is a diagonal 
entry in the system matrix [A].  
 
Table 4. Eigenvalues and their Participation factors  
Mode State Variable Participation Factor 
1 ikq1 0.9952 
2 ikd  0.9998 
3 ωr 0.9932 
4 iq1, id1, iq2 0.1261, 0.5486, 0.2485 
5 iq1, id1, iq2, id2 0.25, 0.25, 0.25, 0.25 
6 id1, id2 0.4623, 04623 
7 id1, id2, ifr 0.2467, 0.2467, 0.4723 
8 id1, id2, ifr, δ 0.1764, 0.1764, 0.3688, 0.1329 
9 id1, id2, ifr 0.2001, 0.2001, 0.4367 
10 iq1, iq2, ifr 0.2344, 0.2344, 04827 
11 vR, Efr 0.5, 0.495 
12 iq1, iq2, ifr, vf, Efr 0.1341, 0.1341, 0.2753, 0.2317, 0.2125 
13 vf, Efr 0.4795, 0.5 

 

The participation factors associated with various 
eigenvalues are given in table 4. Only the participation 
factors whose value is greater than 0.1 are listed here. 

Conclusions 
 The present work addresses the small signal 
perturbation stability characteristics of an asymmetrical six-
phase synchronous generator connected to a constant 
voltage and frequency bus by means of eigenvalue 
approach. This work explores the correlation between 
generator /loading parameters with pair of eigenvalues 
about the given quiescent point of operation. From the 
results presented in this work, it is evident that two complex 
conjugate pair of eigenvalues corresponds to two three-
phase stator winding sets of a six-phase machine, and are 
nearly unaffected by change in rotor electrical or 
mechanical parameters. One complex pair affected by 
variation of rotor parameters and inertia constant is related 
to rotor eigenvalue of machine. The investigation shows 
that there is an enhancement in the machine stability limit 
as stator/rotor resistance increases or decrease in leakage 
reactance. The increase in active power delivered by the 
machine for the given reactive power influences mainly the 
rotor eigenvalues, which indicates higher oscillation 
frequency of the rotor system with higher rate of decay. 
Through determination of participation factor, association of 
various state variables and eigenvalues has been correctly 
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predicted. The obtained results provide basis for design and 
control circuitry of six-phase synchronous generator. 
  
Appendix 

Parameters of machine-I [7]:             
r1 = r2 = 0.21, Xl1 = Xl2 = 0.1758, Xmd = 6.17, Xmq = 3.9, rKq1= 5.07, 
XKq1 = 0.66097, rKq2= 1.06, XKq2 = 0.5495, rfd = 0.00160,   Xfd = 
0.24021, XKd = 1.54959, , Xlm = 0,   Xldq =  0  (for 30° displacement) 
all values are in ohms, J = 0.528 Kg-m2

 

 
Parameters of machine-II [17]:  
r1 = r2 = 0.0166, Xl1 = Xl2 = 0.0558, Xmd = 1.128, Xmq = 0.521, rKq= 
0.0025, rKd = 0.00237, XKq = 0.0676, XKd = 0.0529, rfd = 0.0016,   Xfd 

= 0.04684, Xlm = 0,   Xldq =  0  (for 30° displacement) all values are 
in ohms, J = 5.728 Kg-m2 
 
Excitation system parameters: 
Ka = 300, Ke = 1, Kf = 0.001, Ta = 0.001, Te = 1 and Tf  = 0.1 
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