
314 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 5/2013

Michał GROBELNY1, Andrzej PIECZYŃSKI2

University of Zielona Góra, Media and Information Technology Department (1), Institute of Control and Computation Engineering (2)

Exception Handling in Logic Controller Design by means of
UML Activity Diagrams and Control Interpreted Petri Nets

Abstract. Modelling of all aspects of logic controller in design phase is very important. The paper presents handling of possible exceptions with
usage of two specification techniques – UML activity diagrams and control interpreted Petri nets. Sample control process of transportation of friable
goods is a base for further discussion about complexity of exception handling in each technique. Furthermore, the target is to model exceptions with
usage of standard syntax of each technique.

Streszczenie. Szczególnie ważnym etapem procesu projektowania sterownika logicznego jest modelowanie poszczególnych jego perspektyw.
Artykuł przedstawia możliwość reprezentacji obsługi wyjątków z wykorzystaniem dwóch technik modelowania – diagramów aktywności języka UML
oraz interpretowanych sieci Petriego sterowania. Aspekty modelowania obsługi wyjątków dla obu wymienionych technik zostały zaprezentowane na
przykładzie specyfikacji procesu sterowania transportem materiałów sypkich. Dodatkowo, celem jest zrealizowanie obsługi sytuacji wyjątkowych
z wykorzystaniem tylko i wyłącznie standardowych elementów obu technik modelowania. (Możliwość reprezentacji obsługi wyjątków z
wykorzystaniem dwóch technik modelowania – diagramów aktywności języka UML oraz interpretowanych sieci Petriego sterowania).

Keywords: exception handling, UML activity diagrams, control interpreted Petri nets.
Słowa kluczowe: obsługa sytuacji wyjątkowych, diagramy aktywności UML, interpretowane sieci Petriego sterowania.

Introduction

The modelling is an important phase of whole logic
controller design [4]. Structural and behavioural aspects of
target devices are defined. Appropriate specification without
errors (or rather with a minimized amount of them) is
needed to achieve the quality goal. Moreover, specification
which covers all aspects of designed solution is highly
recommended. Therefore combining exception handling
mechanisms in target behavioural specification of logic
controller can play the key role in design reliability. In the
paper exception handling mechanisms in control processes,
both in UML activity diagrams [6] and Control Interpreted
Petri Nets [2], are proposed and presented. Furthermore,
usage of transformation [5] with proposed interpretation of
exception handling mechanism in logic controller design
with both specification techniques enables formal
verification of complete system specification. Therefore, it
increases the probability of full consistency of client
requirements with the design.

The paper is organised as follows. Section 2 describes
logic controller design process with impact on behavioural
specification phase. Section 3 presents UML activity
diagrams and the possibility of their implementation in
discreet control design. Section 4 introduces exception
handling mechanisms in UML activity diagrams basing on
sample process of transportation of friable good. Control
interpreted Petri nets and mechanisms of exception
handling in this modelling technique is presented in
section 5. Finally, section 6 concludes the paper.

Logic controller design

Logic controller design process [4] is usually realised in
couple phases. First steps of this process are basic
concepts usually saved using some sentences in natural
language describing the idea. Next step is to formalize the
notation and to give shape to the desired device.
Formalization is realised with usage of various techniques.
Behavioural specification is one of formalisms used during
logic controller design, which can be realised with such
techniques as Petri nets or UML diagrams. Both techniques
have possibilities of exception handling mechanisms, but in
both cases different results are reached.

UML activity diagrams

Originally UML [6] during its definition was dedicated to
model software systems and their implementation in frames

of software engineering. However, with the gain of
importance, UML started to appear in different domains
than previously desired. The fact influenced the UML
popularity and in the same time the strength of its evolution
with even faster spread of the technology in various new
regions. In the same time, UML seems to be very efficient in
information flow simplification. Moreover, the technology is
easily readable and understandable by non-technicians,
especially considering system design and its complete
functionality. It is a motivation to use it during consultations
with the client part.

Currently, UML is present even is such domains as
business modelling, workflow description, production
systems design or discrete systems specification. In the last
area multiple diagram types are exploited for structural and
behavioural description. Behavioural system specification is
usually created using state machines, sequence diagrams
and finally activity diagrams. The scope of the paper
concentrates on hardware behavioural modelling acquired
with activity diagrams of UML which describe system
dynamic.

Object Management Group in UML Superstructure
version 2.4.1 [6], dated august 2011, introduces activity
modelling (in other words activity diagrams) as described
below:

“Activity modeling emphasizes the sequence and
conditions for coordinating lower-level behaviors,
rather than which classifiers own those
behaviors. These are commonly called control
flow and object flow models. The actions
coordinated by activity models can be initiated
because other actions finish executing, because
objects and data become available, or because
events occur external to the flow.”

In other words activity diagrams present consecutive
sequence of actions and activities with decisions made
considering external signals or events. This definition
matches to the logic controller behavioural specification
characteristics and thus, it can be successfully implemented
in the domain.

However, in logic controller design not all elements and
aspects of UML activity modelling are taken into account.
Usually, object flow is not implemented due to the fact of
signal oriented nature of the domain without object-oriented
characteristics. In logic controller design input and output
signals play the key role. Thus, specification of control

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 5/2013 315

process by means of UML activity diagrams also
concentrates on signals and these are conditions of actions
or activities executions.

Formally, UML activity diagram dedicated to describe
logic controller specification or control process can be
defined as a 6-tuple:

AD = (A, F, S, E, G, Z),

where:
A is a finite non-empty set of actions/activities;
F is a finite non-empty set of flow relations between
the actions and activities;
S is a finite non-empty set of initial nodes;
E is a finite non-empty set of final nodes;
G is a finite set of guard conditions;
Z is a finite set of output signals.
UML activity diagrams in discreet logic controller design

usually involve one initial node and one final node. Final
node is sometimes omitted, due to cyclic nature of control
processes. Then, instead of a final node a final loop is
specified, which restarts the process after finishing of one
process execution.

Moreover, systems not always can be specified on a
simple one-page diagram. Sometimes a system consists
even of thousands of actions. Therefore, system design
decomposition and hierarchical representation are
important issues in such a large control system. This aspect
enforces decomposition of complex designs into
hierarchical structures concerning autonomous segments of
the design. Decomposition increases readability and
understanding of logic controller specification. On the other
hand, when a reconfigurable logic controller (RLC) is
considered, decomposition of specification can increase
modularity of target implementation with the decrease of
resource usage.

Fig.1. Real model of discussed transportation process

A process for transportation of friable goods [1] is a

base to present exception handling mechanisms in logic
controller design by means of UML activity diagrams and
Petri nets. Real model of described process is presented in
Fig. 1. Process is realized as follows. Initially, the carriage
is in starting points (input signal a). The process is started
after pressing the start button. Firstly, carriage is moving to
the right (active output signal r). The movement is realised
until the carriage reaches its destination point (input signal
b). When the carriage reaches its own destination point, the
chute is opened (active output signal z) and as the result
friable goods are dropped into the carriage, until it is full
(indicated by p input signal). Then the chute is closed
(output signal z is deactivated) and the carriage begins to
move left (active output signal l) until it reaches its staring
point (input signal a). Input signals AU, restart and continue
or output signal alarm are used to model handling exception
mechanisms and will be discussed further in the paper.

Specification of simple process without exception
handling mechanism is presented with usage of UML
activity diagrams in Fig. 2. The specification is basing on

target signals and it is a flat diagram, which means that it is
realized without hierarchy.

Fig.2. Real model of discussed transportation process

Exceptions in UML activity diagrams
Logic controllers are commonly used in many domains.

Mainly controllers supervise industrial automation
processes. Due to the fact, that logic controller is only
supervising machinery systems, there is a possibility that
unexpected scenario may happen. Discussed example with
specification of transportation of goods depends on
operational aspects of carriages and tracks. Possibilities of
defects should be taken into account during specification
preparation. Thus, exception handling mechanisms in logic
controller specification by means of UML activity diagrams
and Petri nets are presented. Exceptions and defects in
discreet process are different to defects common in
software engineering. Therefore, exception handling has to
realise resumption process to ensure a proper functionality
of controlled system.

The sample process (real model in Fig. 1 and UML
activity diagram in Fig. 2) can be divided into three main
functionality parts. The first part is realising movement to
the right, the second is responsible for carriage filling and
finally, the third controls movement to the left. Presented
exception handling mechanism (Fig. 3) also covers these
three parts separately. InterruptibleActionRegion [6] of UML
is covering the guarded part of the diagram.

Indication of signal AU starts exception handling
mechanism and stops normal control process execution.
Presented handling mechanism guarantees resumption of
control process and complete process restart. First
possibility is used to continue the process whenever
exception was not critical and the process can by realised
further. The schema is achieved in Fig. 3 by pressing
continue button. On the other hand, whenever process
exception was critical and there is no possibility to execute
it further, deep restart can be realized. The functionality is
executed by pressing restart button. Pressing continue and
restart buttons does not influence normal control process
execution.

316 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 5/2013

Fig.3. UML activity diagram with exception handling

Fig.4. Exception handlers

 Furthermore exception handling of every part of the
system is specified separately. Every part has its own
exception handler (AlarmR, AlarmF and AlarmL). All
handlers are complex and their implementation is shown in
Fig. 4. Moreover, exception handler is responsible for alarm
signal activation to inform about abnormal process
functionality and also for current process signals
deactivation (e.g. handler AlarmR first to the right in Fig. 4
deactivates control signal R realizing carriage movement to
the right).
Realisation with usage of control interpreted Petri nets

UML activity diagrams are one of possible specification
techniques available to define logic controller behavioural
properties. Petri nets [2], available for over 50 years, are
mathematical model to describe systems built of states and
transitions. Control interpreted Petri nets [1, 2] are one from

various modifications of Petri nets dedicated to specify
control processes.

Formally, a control interpreted Petri net can be defined
as a 8 tuple:

PNIO = (P, T, F, X, Y, ρ, λ, γ),

where:
P is a finite and non-zero set of places;
T is a finite and non-zero set of transitions;
F is a finite and non-zero set of flows between
elements of P and T or elements of T and P (it is
forbidden to create connections between two elements
of the same type e.g. T and T or P and P);
X is a finite and non-zero set of input states;
Y is a finite and non-zero set of output states;
ρ is a function T → 2X, that each transition assigns
the subset of input states X(T); 2X states for the set of all
possible subsets of X;
λ is a function M → Y of Moore outputs, that each
marking M assigns the subset of output states Y(M);
γ (M x X) → Y is a function of Mealy outputs, that
each marking M and input states X assigns the subset
of output states Y.

Fig.5. Control interpreted Petri net with exception handling

 Control interpreted Petri nets, in contrast to UML activity
diagrams, do not have special syntax elements dedicated to
realise exception handling mechanisms. Designer must
manually extend the already existing specification with
usage of extra places and transitions to present exception
handling. Another disadvantage is no possibility of
interruptible region marking. There has to be an extra flow
added to every place of the net with possible exception.
This fact makes Petri net specification less readable and
may sometimes lead to specification faults. Therefore
exception handling mechanism in Petri nets is hardly
realisable.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 5/2013 317

 In Fig. 5 sample control interpreted Petri net with
exception handling corresponding to UML activity diagram
from Fig.3 is presented. Whenever AU signal is activated,
place dedicated handling transition (T5, T8 and T11)
becomes active and token is removed from control part
place (P2, P3 and P4) and added in handler place (P5, P6,
P7). Due to control interpreted Petri net specification, output
signals are assigned to places, therefore whenever token is
removed from a place – output signal becomes inactive.
Moreover, whenever token is placed in handler place of the
net, alarm signal is turned on. Resumption of the process in
every handler is realised with usage of two transitions. First,
with guard continue (transitions T6, T9, T12 for adequate
handler) which is responsible for simple continuation of
interrupted process. Other transitions (restart guard,
transitions T7, T10, T13) are responsible for whole control
system reset and its return into initial state.

Fig.6. Control interpreted Petri net with multiple places exception
handling
 Furthermore, whenever exception handling is
considered, there is no possibility to cover graphically a part
of process with one exception handler. In UML activity
diagrams syntax, a part of control process is covered with
InterruptibleActionRegion and one flow directs to exception
handler. In control interpreted Petri nets, there has to be a
connection (transitions with flows) between every place in
the covered part with one dedicated handler. Fig.6 presents
covering of two places (P4, P5) with one dedicated
exception handling place. There has to be a dedicated
exception handling transition connected with every covered
place to realise exception handling mechanism. Transition
T6 is realising exception interruption of place P4 and
transition T7 is realising the same mechanism of place P5.
In very complex control systems such multiplication of
handling transitions can cause significant growth of the net.
Therefore, exception handling mechanism in control
interpreted Petri net is much less efficient than it is in UML
activity diagrams based specifications. Thus, some
combination of both techniques with usage of
transformation [5] may be reasonable.
 There is also a new interpretation of Petri net proposed
in [3], which has exception handling possibilities referring to
the UML techniques. However, the main disadvantage of
proposed solution is the fact, that the new interpretation
creates a new syntax of Petri nets.

Conclusion
 Exception handling mechanisms in control process
behavioural specification play an important role fulfilling
design process. Implementation of such mechanism is
presented in the paper with usage of UML activity diagrams
and control interpreted Petri nets. Presented mechanisms
cover situations when after defect removal normal further
continuation of process is possible. Moreover, critical
situations are also covered and complete system restart is
then realized.
 In the paper two hardware behavioural specification
techniques are considered. UML activity diagrams have
dedicated exception handling elements and therefore
handling mechanisms are realisable without meaningful
increase of the diagram size. On the other hand, Petri nets
are supported with enormous set of analysis, optimisation
and verification tools and techniques. Authors propose the
interpretation of exception handling mechanisms in logic
controller design by means of UML activity diagrams and
control interpreted Petri nets dedicated to their common use
with help of transformation technique [5]. Combined usage
of both Petri nets and UML activity diagrams enriches
design possibilities and may enhance target product quality.
Transformation method between UML activity diagrams and
Petri nets [5] may be useful to connect both techniques in
one design engine.

Acknowledgments

Michał Grobelny is a scholar within Sub-measure 8.2.2 Regional
Innovation Strategies, Measure 8.2 Transfer of knowledge, Priority
VIII Regional human resources for the economy Human Capital
Operational Programme co-financed by European Social Fund and
state budget.

REFERENCES

[1] Adamski, M. and Chodań, M. Modelling of discreet control

circuits using SFC nets. Politechnika Zielonogórska Press,
2000.

[2] David, R. and Alla, H. Discrete, Continuous, and Hybrid Petri
Nets, Springer Verlag, 2010.

[3] Doligalski, M. and Adamski, M. (2010). Exceptions and deep
history state handling using dual specification. Electrotechnical
Review, 86 (2010), nr 9, pp. 123 – 125 (in Polish).

[4] Gomes, L. and Barros, J.P. and Costa, A. Modeling
formalisms for embedded system design, Embedded Systems
Handbook, Taylor & Francis Group, LLC, 2006.

[5] Grobelna, I. and Grobelny, M. and Adamski, M. Petri Nets and
activity diagrams in logic controller specification –
transformation and verification, In Proceedings of the 17th
International Conference Mixed Design of Integrated Circuits
and Systems, 2010, pp. 607 – 612.

[6] Object Management Group. OMG Unified Modeling Language,
Superstructure, Version 2.4.1, 2011.

Authors: mgr inż. Michał Grobelny, University of Zielona Góra,
Media and Information Technology Department, Al. Wojska
Polskiego 69, 65-762 Zielona Góra, E-mail:
M.Grobelny@kmti.uz.zgora.pl; dr hab. inż. Andrzej Pieczyński,
Prof. UZ, University of Zielona Góra, Institute of Control &
Computation Engineering, ul. Ogrodowa 3b, 65-462 Zielona Góra,
E-mail: A.Pieczynski@issi.uz.zgora.pl.

