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Abstract. This paper presents a new method to design power system stabilizer (PSS) using fuzzy wavelet neural network (FWNN) for stability 
enhancement of a multi-machine power system. In the proposed approach, Wavelet Neural Network (WNN) is used to construct a well localized in 
both time and frequency domains consequent part for each fuzzy rule of a Takagi-Sugeno-Kang (TSK) fuzzy model. In designing the FWNN 
stabilizer the activation function of hidden layer neurons is substituted with dilated and translated Mexican Hat wavelet function. In the proposed 
method, an efficient genetic algorithm (GA) approach is used to obtain the optimal values of such parameters as translation, dilation, weights, and 
membership functions. These parameters are tuned through simulation of non-linear model of power system under chosen disturbance by 
minimizing a non-explicit based objective function. Results are promising and demonstrate the capabilities of the proposed FWNN stabilizer in 
damping of overall power oscillations in the system. It is worth noting that the proposed FWNN stabilizer, moreover, significantly improves the 
dynamic response characteristics, reducing the number of fuzzy rules as well as a fast convergence of network. 
 
Streszczenie. W artykule opisano metodę projektowania stabilizatora systemu elektroenergetycznego z wykorzystaniem sieci neuronowej bazującej 
na rozmytej teorii falkowej. W celu optymalizacji parametrów sieci zastosowano algorytm genetyczny oraz wykonano symulacje uwzględniające 
odpowiednie zakłócenia w sieci. Wykonane badania wykazały, że proponowany algorytm pozwala na skuteczne tłumienie oscylacji mocy w systemie 
elektroenergetycznym. (Zastosowanie sieci neuronowej z falkami rozmytymi oraz algorytmu genetycznego w stabilizacji elektrycznego 
systemu wielomaszynowego). 
 
Keywords: Fuzzy wavelet neural network stabilizer; Wavelet neural network; Genetic algorithm. 
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Introduction 

Power system stabilizers (PSS) have been extensively 
used in large power systems for stabilizing and damping 
low frequency oscillations caused by disturbances in the 
power network. It provides an additional control loop that 
generates an auxiliary stabilizing signal to the excitation 
system generators, in-phase with the synchronous rotor 
speed deviations, in order to improve power system 
dynamic performance [1]. The conventional fixed structure 
PSS [2, 3] designed using a linear model obtained by 
linearizing the nonlinear model considering a single 
operating point provides optimum performance for the same 
operating condition and system parameters. However, the 
performance becomes suboptimal following deviations in 
system parameters and loading condition from their nominal 
values. 

During the last two decades, several methods have 
been proposed to design a PSS that could get better 
performance in comparison to the conventional ones. These 
methods use techniques such as Gain-Scheduling [4], 
Adaptive Control [5, 6], Neural Networks [7, 8] and Fuzzy 
Logic Systems [9, 10, 11]. Each of these techniques has 
their own advantages and disadvantages. For instance, 
although adaptive control based power system stabilizers 
resulting in a better dynamic performance for different  
operating conditions, but bearing from the major drawback 
of requiring parameter model identification, state 
observation, as well as feedback gain calculations in online 
mode [12]. Fuzzy logic controllers (FLC) are capable of 
coping with nonlinear uncertain systems effectively but their 
design basically is based on a trial-and-error method. The 
main disadvantage of neural networks is that a large 
number of neurons are required when dealing with 
the intricate problems. Moreover, they also lead to slow 
convergence rate and convergence to a local minimum. 

In recent years, wavelet neural networks (WNN), which 
combine neural networks with wavelet functions have 
become very popular and have been applied in many 
scientific and engineering research areas such as system 
identification [12], signal processing and function 
approximation [13]. The activation functions such as 
sigmoid and Gaussian functions which have non-local 
properties in time are swapped with the wavelet functions in 

hidden layers neurons of the WNN. Unlike the multilayer 
perceptron which is a global network, WNN is a local 
network in which the output function is well localized in both 
time and frequency domains. The training of the network in 
one part of the input space does not corrupt that which has 
already been learned in more distant regions. Thus, the 
learning speed of the local network is generally much faster 
than the global network. Furthermore, local minima can be 
eliminated in the local network [14]. 

A Fuzzy wavelet neural network (FWNN) combines 
Takagi-Sugeno-Kang (TSK) fuzzy model with wavelet 
neural networks. The synthesis of a fuzzy wavelet neural 
inference system includes the determination of the optimal 
definitions of the premise and the consequent part of fuzzy 
IF–THEN rules. Several papers have discussed the 
synthesis of a fuzzy wavelet neural inference system for 
time series prediction, function approximation, system 
identification, and control problems [15–19]. In [15], the 
fuzzy wavelet neural networks are proposed for 
identification and control of dynamic plants, and in [16], the 
chaotic time-series prediction using adaptive wavelet-fuzzy 
inference system is presented. Using combines TSK fuzzy 
models with wavelet transform and ROLS learning 
algorithm a fuzzy wavelet network is proposed to 
approximate arbitrary nonlinear functions in [17]. In [18] 
each fuzzy rule is represented by a sub-WNN, existing for 
all the dimensions of each wavelet single-scaling wavelets 
with the same dilation parameters. The constructed network 
is used for function approximation and control of nonlinear 
systems. A wavelet and neuro-fuzzy conjunction model are 
used for the application of short-term and long-term 
streamflow forecasting in [19]. 

This paper presents a new method for stability 
enhancement of a multi-machine power system using 
FWNN stabilizer. The proposed framework combines 
several soft computing (SC) techniques such as a TSK 
fuzzy system, wavelet transform, neural networks (NN), and 
GA. In order to avoid trial-and-error and time-consuming 
processes, the GA method is used as an optimization 
technique to obtain the optimal values of parameters of 
translation, dilation, weights, and membership functions. In 
the proposed method, the search capability of the GA is 
enhanced by introducing an improved evolutionary direction 
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operator (IEDO) [20], which leads to a higher probability of 
getting global or near global optimal solutions. Simulation 
results demonstrate the capabilities of the proposed FWNN 
stabilizer in damping of overall power oscillations in the 
system. Moreover, compared with the existing methods, it 
can also reduce the number of fuzzy rules as well as a fast 
convergence of network. 

 
Overview of genetic algorithm 

A genetic algorithm based evolutionary process is an 
optimization technique that is often able to locate near 
optimal solutions to complex problems. To achieve this aim, 
it preserves a set of trial solutions often called as individuals 
and forces them to evolve towards an admissible solution. 
Although the binary representation is frequently applied to 
power system optimization problems, the real-valued 
representation scheme is adopted in our study for the 
solution. The use of real-valued representation in the GA is 
claimed by Wright [21], has a number of benefits in 
numerical function optimization with respect to binary 
encoding. The design procedure of the GA approach is 
described as follows: 

Step 1) Initialization of individuals 
Set generation t = 0. In the initialization process, a 
population of individuals (chromosomes) is randomly 
created within user-specified bounds (boundary 
constraints). 

Step 2) Evaluation 
Each chromosome in the population will be evaluated by a 
defined fitness function. The better chromosomes will return 
higher values in this process. 

Step 3) IEDO 
The idea behind IEDO is to choose the three best solutions 
in each generation in order to implement the evolutionary 
direction operator (EDO) algorithm, and then obtain a new 
solution that is superior to the original best solution [20]. 

Step 4) Selection 
Selection is the process of determining the number of trials 
for a particular individual for reproduction and, thus, the 
number of offspring that an individual will produce. The 
selection used in this paper depends on individual fitness. 
The best individuals of the present population are kept for 
the next population. 

Step 5) Crossover 
This is a basic operator for producing new chromosomes in 
genetic programming. Crossover produces new individuals 
that have some parts of both parents’ genetic properties. A 
binomial mutual crossover is used to increase the local 
diversity of the individual [22]. The probability of crossover 
is set to 0.4. 

Step 6) Mutation 
The individual will then undergo the mutation operation, 
which changes the genes of the chromosomes. In this 
paper, non-uniform mutation operator is employed [22]. The 
mutation rate is set to 0.008. 

Step 7) Verification of stop criterion 
Set the generation number for t = t + 1. Proceed to Step 2 
until a stopping criterion is met, usually a predefined 
maximum number of generations. 
 
Wavelet neural network 

A wavelet network corresponds to a three-layer 
structure including the wavelet functions in the neurons of 
the hidden layer of the network as activation functions [23]. 
A wavelet is a waveform of effectively finite duration with a 
zero average value. Wavelet analysis includes the 
decomposition of a signal into shifted and scaled versions 
of a single prototype function, known as the original or 
mother wavelet. The structure of wavelet network with one 

output , n inputs (x1, x2, . . . , xn) and m nodes in the hidden 
layer, is given in Fig. 1. The wavelet form is defined as 
follows: 
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and wj are the weight coefficients between hidden and 
output layers. Notice that the Mexican Hat function   

)2/exp()1()( 22 xxx  , is used as the mother wavelet 

function in this paper. 
 
Fuzzy wavelet neural network Structure 

The FWNN model is a feed-forward multi-layer network 
which integrates traditional Takagi-Sugeno-Kang fuzzy 
model with wavelet neural networks. The kernel of the fuzzy 
system is the fuzzy knowledge base that consists of the 
input-output data points of the system interpreted into 
linguistic fuzzy rules. The consequent parts of TSK-type 
fuzzy IF–THEN rules are represented by either a constant 
or a linear function of input variables. TSK-type systems 
generally cannot model the complex processes with desired 
accuracy using a certain number of rules. In the classic 
TSK-type neuro-fuzzy networks [24], which are linear 
polynomial of the input variables, the system output is 
locally approximated by the rule hyper-planes.  
 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
                                                                   

Fig. 1.  Architecture of WNN                                
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Nevertheless, the traditional TSK-type neuro-fuzzy 
networks do not take full advantage of the mapping 
capabilities that the consequent part might offer. In the 
FWNN, constant or linear functions in consequent part of 
the rules in TSK fuzzy system are substituted with wavelet 
functions. Using these functions instead of common 
activation functions in neural networks with one-hidden 
layer leads to increase computational power of neuro-fuzzy 
system regarding the fact that wavelets have time-
frequency localization properties. Now suppose that there 
are M fuzzy IF–THEN rules in the following form: 
 

(5) 1 1 2 2: ...l l l l l l
i nR IF x is A AND x is A AND x is A THEN y is   

 

where xi is the i th input variable of the system for i = 1:n  

and l
iA is a linguistic term characterized by a fuzzy 

membership function )( il
iA

x  for l =1,2, ..., M. By applying 

fuzzy product inference engine, singleton fuzzifier, and 
Gaussian membership functions, the output of whole 
network can be calculated as 
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where )( il
iA

x is the Gaussian membership function 

defined by 
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where l
ic denotes the center parameters, and l

i  denotes 

the scaling parameters for membership function associated 
with rule l. The structure of fuzzy wavelet neural network is 
given in Fig. 2, and the structure of each sub-WNN is 

presented in Fig. 1. Notice that )(xl  in Fig. 2 is calculated 

as 
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i il
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where x = [ x1, x2, . . . , xn] is the input vector presented to the 
network for i = 1, 2, ..., n and l is the total number of fuzzy 
rules for l = 1, 2, ..., M. 
 
The network optimization 

The training of the parameters is the main problem in 
designing a fuzzy wavelet neural network. To solve this 
problem, back-propagation (BP) training algorithm is 
extensively used [24, 25] as a powerful training method 
which can be applied to the forward network architecture. 
Since the steepest descent method is used in BP training 
algorithm to minimize the error function, sometimes the 
algorithms may reach the local minima quickly and thus 
never find the global optimal solution. Furthermore, BP 
training algorithm is slow to converge, and its overall 
performance depends on initial starting point values. The 
GA is an efficient technique for optimization problem which 
can be used to improve the training of FWNN and prevent 
sticking to local minima [19]. During the network training 

process, the center parameters ( l
ic ) and scaling 

parameters ( l
i ) of Gaussian membership functions in 

antecedent part of the rules, and translation ( l
ijb ), dilation 

( l
ija ) parameters of wavelet functions, and weight ( l

jw ) 

parameters in the consequent part of the rules are 
optimized.  
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Fig. 2.  Structure of fuzzy wavelet neural network 
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One of the common problems for an interconnected 

power system is the existence of lightly-damped power 
oscillations between interconnected areas; these 
oscillations are associated with the dynamics of inter-area 
power transfers which, under heavy transfer of load, often 
exhibit a low-damping condition. To achieve an overall 
effective damping improvement, lightly damped inter-area 
oscillations on the tie-lines between interconnected areas in 
a power system must be considered in the tuning 
procedure. This can be realized through adding the active 
power deviations, ∆ptie,d, on relevant tie-lines into the 
performance index. Thus, we adopt a non-explicit 
performance index involving the active power deviations of 
both ∆pGe on each individual generator and ∆ptie,d on the 
relevant tie-lines. In a multi-machine power system with h 
generators and r selected tie-lines, the performance index J 
can be defined as 
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where N is the total number of the sample,  PGe(q)  for e = 
1,2, ..., h is the accelerating power of the e th generator at 
sample q, PGe(0)  is the corresponding initial state, Ptie,d(q) 
for d = 1,2, ...,r is the active power on the d th health tie-line 
at sample q, and Ptie,d(0)  is its initial state. The FWNN 
training is carried out through minimizing the above-
discussed performance index. 

Assume that there are N samples (x(1), x(2), ..., x(q)) for q 
= 1, 2, ..., N, over a time interval from 0 to ts.  Accordingly, 
the network output for the k th chromosome associated with 
sample q, can be calculated as follows: 
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Therefore, the k th chromosome is represented as 
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can all be considered as free design parameters. Thus, the 
total number of free unknown parameters to be optimized is 
M(m(2n+1)+2n). The designing FWNN stabilizer is, 
therefore, equivalent to determination of the above-
mentioned parameters. The computational flow chart of the 
GA optimization approach is shown in Fig. 3.  After applying 
the GA approach, the best individual of the final generation 
is the solution. The constructed FWNN stabilizer is used to 
damp out the power system oscillations more effectively. 
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Fig. 3.  Flow chart of the GA optimization approach 
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Simulation and case studies 
In order to demonstrate the validity of the proposed 

FWNN stabilizer, and to tune its parameters in the way 
presented in this paper, simulation studies are performed 
based on two different nonlinear models. The first model is 
a single-machine infinite-bus (SMIB) model applied here to 
facilitate finding the optimal number of fuzzy rules and the 
optimal number of wavelets in each sub-WNN. The second 
model is a four-machine two-area system used as a 
benchmark problem in the literature. In the proposed design 
procedure, the stabilizing signal, y, is computed by the 
FWNN stabilizer using the generator speed deviation )(   

and acceleration )(


  as the input signals to FWNN 

stabilizer during each sampling period. In practice, only 
shaft speed deviation is readily available. Hence, the 
acceleration signal can be derived from the speed signals 
measured at two successive sampling instants as follows: 
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where T is the sampling period and q is the sampling count. 
A sampling period of 10 ms is chosen for the present 
studies. The input vector of FWNN is selected as 

1 2[ , ] [( ), ( )]x x  


   , meaning the FWNN stabilizer has 

only two inputs. Also, in Fig. 2 the output of FWNN, y, 
generates the stabilizing signal to the excitation system of 
the generator. 
 
Selecting wavelets and fuzzy rules 

The study in this section is carried out on a SMIB power 
system [26], and the results obtained are used in designing 
the FWNN stabilizer in a multi-machine power system. To 
find the optimal number of fuzzy rules and the optimal 
number of wavelets in each sub-WNN, several cases are 
investigated. For this purpose, experiments are conducted 
using the proposed FWNN stabilizer by increasing the 
number of fuzzy rules (M) from 1 to 7, and decreasing the 
number of wavelets in each sub-WNN (m) from 7 to 1. For 
each combination of values regarding these parameters (M, 
m), the training of the network is repeated 20 times for 
different random initializations of the proposed FWNN 
stabilizer to bring out the optimal values of M and m. 
The boundary constraints for generating the initial 
population are provided in Table 1.  It should be noted that 
the use of normalized domain, i.e. universes of discourse 
(UOD) requires a scale transformation which maps physical 
values of process variables into a normalized domain. A 
performance index dttwJ   22  is selected for the 

optimization, evaluated through simulation of the system 
dynamic model considering a three phase fault at the 
generator terminal. The maximum generation number is set 
as 100. The maximum, average, and minimum performance 
index obtained for each parameters combination are shown 
in Table 2. According to the data in Table 2, we can easily 
find that the proposed FWNN stabilizer provides the best 
results in case M = 3 and m = 5. It is worth noting that for 
other parameters combination, we also have an optimum of  
 
 

the generalization ability, though worse than that obtained 
for    M = 3   and    m = 5.  Also,   the    best      chromosome 
corresponding to the smallest fitness value at each 
generation is presented in Fig. 4. It clearly shows that the 
gradient rate of convergence properties of the proposed 
FWNN stabilizer during the network training is dramatic. 
 
Table 1. The lower and upper bounds for generating the initial 
population 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.  Variation of performance index J on each generation. 
 

Simulation results in a multi-machine power system 
The benchmark two-area model shown in Fig. 5 is 

adopted for simulation studies. The test system [1] consists 
of two symmetrical areas linked together by two 230 kV 
lines of 220km length. It was specifically designed to study 
low frequency electromechanical oscillations in large 
interconnected power systems. Despite its small size, it 
mimics very closely the behavior of typical systems in actual 
operation. Each area is equipped with two identical round 
rotor generators rated 20kV/900MVA. The synchronous 
machines have identical parameters, except for inertia 
which is H = 6.5s for generators in area 1 and H = 6.175s 
for generators in area 2. Thermal plants having identical 
speed regulators are further assumed at all locations, in 
addition to fast static exciters with a 200 gain. The loads are 
assumed everywhere as constant impedance load models. 
The performance of the designed FWNN stabilizer is 
compared with both multi-band power system stabilizer 
(MB-PSS) and Conventional PSS. The MB-PSS is 
represented by the IEEE St. 421.5 PSS 4B type model [27] 
and the Conventional PSS is taken from P. Kundur [1].    

 
 
 

Number of fuzzy rules (M) 1 2 3 4 5 6 7 
Number of wavelets in each sub-WNN (m) 7 6 5 4 3 2 1 
Number of optimization parameters 39 68 87 96 95 84 63 
Maximum performance index (×102) 0.3492 0.3486 0.3449 0.3494 0.3650 0.3657 0.4164 
Minimum performance index (×102) 0.3201 0.3162 0.3084 0.3080 0.3102 0.3093 0.3122 
Average performance index (×102) 0.3355 0.3342 0.3291 0.3334 0.3366 0.3378 0.3516 

Part of the rules Parameters Lower 
bounds 

Upper 
bounds

 
Antecedent 

Center (
l
ic ) -1 1 

Scaling (
l
i ) 0 1 

 
 

Consequent 

Translation  (
l
ijb ) -1 1 

Dilation (
l
ija ) 0 1 

Weight (
l
jw ) -1 1 

Table 2. The maximum, average, and minimum performance index obtained for each combination of parameters (M, m). 
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Based on the statistic results shown in Table 2, the 

parameters are chosen as follows: number of fuzzy rules M 
= 3 and number of wavelets in each sub-WNN m = 5. The 
population size and the maximum generation number are 
set to 40 and 100, respectively. With these parameters, the 
training of the network is repeated 20 times from different 
initial populations and select the best result as the final 
optimization solution. The parameters of the Gaussian 
membership functions obtained at the end stage of training 
algorithm are given in Table 3. In order to validate the 
feasibility and effectiveness of the proposed FWNN 
stabilizer for improving the stability of a multi-machine 
power system, its dynamic performance is examined under 
small disturbance and large disturbance. 

 
Small disturbance test 
The performance of the proposed FWNN stabilizer is 

evaluated by applying a small disturbance in the form of a 
10% increase in AVR reference voltage of generator G1 for 
0.2 second and then returns to 1 pu. For comparison 
purposes, the actual speed difference between the two 
generators, G1and G3, in area 1 and area 2 is monitored. 
The power transfer from area 1 to area 2 is also monitored. 
The performance of proposed FWNN stabilizer is compared 
with both the MB-PSS and the Conventional PSS. Fig. 6 
shows the dynamic characteristics of the system for the 
above-mentioned contingency. The simulation results 
reveal that the proposed FWNN stabilizer can provide 
improved dynamic performance compared with both the 
MB-PSS and the Conventional PSS. It is clear from the Fig. 
6 that the proposed FWNN stabilizer significantly 
suppresses the oscillations in the system, providing more 
desirable damping characteristics to low frequency 
oscillations through quicker stabilization of the system. 
 

Large disturbance test 
In order to investigate the effectiveness of the proposed 

FWNN stabilizer under more severe conditions, a three 
phase fault is imposed at three different locations of the tie-
line. Location “a” is at the middle of the tie-line while 
locations “b” and “c” are considered to be within areas “1” 
and “2”, respectively. The fault occurs at t = 1.0 sec and 
cleared after 6 cycles. The original system is restored after 
the fault clearance. The performance of the proposed 
FWNN stabilizer is compared with both the MB-PSS and 
the Conventional PSS. For fair comparison, all simulation  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. (a) Gen. 1 swing against Gen. 3 for small disturbance. (b) 
Power transfer from area 1 to area 2 for small disturbance. 
 
results consider saturation limits of ±0.15 pu on the control 
signals provided either by the MB-PSS and the 
Conventional PSS or by the proposed FWNN stabilizer. 
Figs. 7-9 show the generators’ actual speed responses 
when the system is simulated at a 413 MW power transfer 
level from the area 1 to the area 2. From these figures, one 
can conclude that the proposed FWNN stabilizer provides 
good damping to the system oscillations, not only in 
damping of the generator rotor modes but also in damping 
of oscillations on the tie-line between the two areas. 
Furthermore, simulation results demonstrate the superiority 
of the proposed FWNN stabilizer over the MB-PSS and the 
Conventional PSS both in the transient and the steady-state 
responses. 
 
Conclusions 

Using the GA approach, the structure of FWNN 
stabilizer is proposed in this paper for damping low 
frequency oscillations in a multi-machine power system. 
The proposed FWNN stabilizer incorporates the advantages 
of fuzzy concepts, neural networks, and wavelet functions. 
In the presented method, constant or linear combinations of 
input variables in consequent part of the rules in TSK fuzzy 
system are substituted with wavelet functions. Using these 
functions instead of common activation functions in neural 
networks with one-hidden layer leads to increase 
computational power of neuro-fuzzy system regarding the 
fact that wavelets have time-frequency localization 
properties. The parameters of the proposed FWNN 
stabilizer are tuned through a GA approach. The nonlinear 
simulation results demonstrate the capabilities of the 
proposed FWNN stabilizer in damping of overall power 
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Fig. 5. Diagram of the four-machine power system. 

Table 3. The parameters of membership functions after learning algorithm in case M = 3 and m = 5. 
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oscillations in the system. This method is also compared 
with both the MB-PSS and the Conventional PSS, showing 
better response behavior to damp out low frequency 
oscillations and significantly improves the dynamic stability 
of the power system. Additionally, this study shows that the 
proposed FWNN stabilizer provides other advantages such 
as fast convergence rate, considerable decrease in the 
number of fuzzy rules and easy algorithm. 

 
 

 
 
 
 
 
 
 

 
Fig. 7. (a) Gen. 1 swing against Gen. 3 for large disturbance, fault 
location “a”. (b) Power transfer from area 1 to area 2 for large 
disturbance, fault location “a”. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8. (a) Gen. 1 swing against Gen. 3 for large disturbance, fault 
location “b”. (b) Power transfer from area 1 to area 2 for large 
disturbance, fault location “b”. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9. (a) Gen. 1 swing against Gen. 3 for large disturbance, fault 
location “c”. (b) Power transfer from area 1 to area 2 for large 
disturbance, fault location “c”. 
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