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Abstract. Dynamic State Estimation (DSE) techniques have the ability to foresee potential contingencies and security risks. Any improvement in its 
ability to estimate would definitely go a long way in reducing the security risks in the modern power system. One important factor affecting the quality 
of estimation is the measurement accuracy. Phasor Measurement Unit (PMU) has revolutionized the way state estimation is performed. The unique 
ability to measure the voltage and current phasors (magnitude and phase angle) with very high accuracy makes PMU extremely useful in modern 
Energy Management Systems (EMS). Due to the high price, technology level and communication capacity, the PMU can’t be equipped in all buses 
in the system nowadays. Therefore, this paper brings forward an improved method on dynamic state estimation that combines some buses 
measurements from PMU with measurements from SCADA. As Relevance Vector Machine (RVM) has a better performance on the regression, the 
state estimation algorithm is based on RVM in this article. Since the input data dimension is too large, pre-processing of data is needed. 
Autoencoder Network (Autoencoder) can be used for data dimensionality reduction. So this paper uses Autoencoder to reduce the data 
dimensionality, and then uses RVM to estimate the state of power system.  
 
Streszczenie. W artykule przedstawiono metodę estymacji stanów dynamicznych w sieci elektroenergetycznej, wykorzystujący pomiary fazy i 
amplitudy napięcia i prądu oraz pomiary SCADA z poszczególnych punktów sieci. W algorytmie wykorzystano maszynę wektorów RVM. Ze względu 
na zbyt duży wymiar danych wejściowych, zastosowano pre-processing z wykorzystaniem sieci neuronowej auto-encoderowej. (Estymacja stanów 
dynamicznych w sieci elektroenergetycznej). 
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1. Introduction 

EMS plays an important role in monitoring and controlling 
the power system and state estimation forms its backbone. 
With increased operations of power system to its limits and 
the tendency to utilize the grid to its full potential these 
days, monitoring and controlling with high level accuracy 
becomes a trend. Because of the unique ability to predict 
the state vector one time stamp ahead and the advanced 
complexity of operating large interconnected networks, 
electric system uses modern Energy Management 
System(EMS). The purpose of an EMS is to monitor, 
control, and optimize the transmission and generation 
facilities with advanced computer technologies. The aim of 
the state estimation function is to obtain the best estimate of 
the current system state [1]. The state estimation is also 
called Filter. It ensures the secure and economical 
operation of the power system. The state estimation uses 
the redundancy of the real-time measurement system to 
improve the data precision, gets rid of the false information 
due to the random interferer and estimates the state of 
power system. The state estimation includes the static state 
estimation and the dynamic state estimation [2]. The static 
state estimation is using the measurement data to estimate 
the power system state at the same time. And the dynamic 
state estimation is using the measurement data at last time 
and measurement data now to estimate systems state [3-4]. 

The dynamic state estimation not only has all the 
strongpoints of the static state estimation, but also can 
distribute the power energy economically, forecast the 
safety of system state, and control the system preventively 
[5-8]. At present, many state estimation methods in power 
system are based on the static estimation and the 
measurement data of these methods come from 
SCADA/PMU system. Because these data are transmitted 
to control center once 2 seconds through RTU, the error of 
RTU and every tache in the transmission make the errors of 
measurement data bigger, the accuracy of voltage phasor 
accepted by iterating becomes very imprecise [9-10]. 
Currently, with the development of GPS and its application 
in the power system, the time transferring function of GPS 
is used widely in the power system. The PMU based on 
GPS starts to be equipped in the power system step by 

step. Because the measured data from PMU are carried to 
control center more quickly than the measured data from 
SCADA, and the PMU can measure the voltage's angle, the 
precision of measured data from PMU is better than that 
from SCADA. Moreover, the PMU can measure the branch 
current phasor and the bus's voltage phasor. If these data 
are combined in the state estimation method, the precision 
of state estimation will be improved. The reference [11]-[13] 
bring forward some methods that combine the mixed 
measurements in state estimation after some PMU, which 
are placed in buses and improve the precision in state 
estimation. However, these methods are all based on 
measurements at the same time and thus belong to static 
state estimation. 

Compared with the traditional method, this new method 
enriches the data-base infinitely, describes the track of 
system operation more exactly and provides a mass of 
analyzed data to system for the next analysis of system 
operation, accident preventing, evaluating and controlling 
online. This new method predigests the Jacobian matrix 
greatly, shortens the computing time, improve the precision 
and astringency on state estimation when the precision of 
measurements is higher. When the precision of 
measurements is not high, although the new method that 
increases the known measurements of system makes the 
Jacobian matrix more complex, it increases the precision of 
state estimation value. With the fast development of the 
power system and the improvement of the computer 
operation speed, there will be a urgent need for wide and 
real time measurements in future power system, then the 
state estimation in millisecond level. Compared with 
traditional methods, this new method meets the demand of 
the future power system more developed in computer 
speed and result precision. As methods to estimate the 
state in power system, forecasting state data in power 
system and iterative estimation of state are merged into this 
state estimator. Hence, in this paper RVM is introduced into 
state estimation of power system and the experiment 
results show that this new method can get satisfactory 
effect. Relevance Vector Machine (RVM) [14] is a new kind 
of regression method in recent years, which is based on 
relevance vector algorithms. Compared with the method of 
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Kalman Filter, Genetic Algorithms, Neural Network 
Algorithms and SVM, RVM features can make estimation 
accurate and control the sparseness of the decision-making 
function in learning machine directly. However, there still 
remains some problems: 1. the high dimension of the input 
data required by the state estimation algorithm from 
SCADA/PMU system; 2. the high time cost of RVM to get 
satisfactory performance due to RVM using the greedy 
algorithm to approximate given function by searching a 
linear combination of basis functions choosing from a 
redundant basis function dictionary. In this paper, 
dimensionality reduction is added into state estimator as a 
preprocessing module to deal with these problems. 
Autoencoder [15-16] is a kind of network algorithm 
proposed by G. E. Hinton and R. R. Salakhutdinov, which 
maps the high dimension features in the input space to new 
lower dimension coordinates. This pretreatment not only 
keeps the original topological structure of the original data 
but also deals with the nonlinear relationship among the 
input data well. Then RVM is used to train the data after the 
Autoencoder pretreatment, create training models and 
forecast the systemic state variables such as voltage 
magnitude and phase angle value of every node. 
Autoencoder-RVM is a kind of state estimation method 
which does not depend on the dimensionality of the 
problem. 

 
2. Formulation of state estimation 

Mathematically, the information model used in power 
system state estimation uses the equation (1): 

(1)                              ( )z h x e   

Where: : ( 1)z m  measurement vector, : ( 1)x n  true state 

vector, ( ) : ( 1)h x m  state equation vector, 

: ( 1)e m measurement error vector, m : the number of 

measurements, n : the number of state variables. 
The usual state variables are the voltage magnitude and 

angle, while the measurements are the real and reactive 
power flows, node injections and voltage magnitudes. The 
objective function of the state estimation is the same as that 
of conventional state estimation as follows: 

(2)      2

1

min ( ) ( ( ))
m

i i i
i

J x w z h x


   

where, iw : a weighting factor of measurement variable iz . 

Commonly, a criterion that is used in state estimation 
formulation is to minimize the sum of the differences 
between the estimated and true values. This approach is 
called the weighted least squares(WLS) estimation. 
3. The proposed state estimation model 

One way of handling high-dimensional data is 
dimensionality reduction. By learning algorithm, we get the 
status of hidden-variable model. We call this implicit 
variable essential dimension, and essential dimension is 
often much smaller than the original data. Autoencoder 
uses adaptive, multi-layer network coding high-dimensional 
data into low-nesting. By the middle of training with multiple 
layers of bi-directional deep neural networks to high-
dimensional data into low-dimensional nesting and use 
similar decoding network from low-dimensional 
reconstruction of nested high-dimensional data. Since the 
Autoencoder gives bi-directional mapping between inputted 
encoding high-dimensional data and low nested data, it 
overcomes the problem of inverse mapping that most of the 
non-linear dimensionality reduction methods have. 

 

3.1. The structure of Autoencoder 

We should know that 1{ , , } D n
nR r r       is a high 

dimensional dataset with n  vectors where ir  is the i -th 

data with D  dimensions. 1{ , ,} d nM m       subject to 

d D , is a kind of low nested data. Through Autoencoder, 
low nested data M among the high-dimensional data R can 
be found. The basic procedure is shown in Figure 1. The 
whole system contains encoding network and decoding 
network. Encoding network is that dimensionality reduction 
network is used to transform the high dimensionality data to 
low nested data. Decoding network is that reconstruction 
process can be seen as the inverse process of the 
encoding network and can transform the low nested data to 
high dimensionality data. Pretraining consists of learning a 
stack of restricted Boltzmann machines (RBMs), each with 
only one layer of feature detectors. The learned feature 
activations of one RBM are used as the "data" for training 
the next RBM in the stack. After the pretraining, the RBMs 
are "unrolled" to create a deep autoencoder, which is then 
fine-tuned using backpropagation of error derivatives. 

An ensemble of vectors can be modeled using a two-
layer network called a "Restricted Boltzmann 
machine"(RBM)[14, 15]. The structure of RBM contains a 
visual layer , a hidden layer and the connection between a 
visual layer and a hidden layer. A joint configuration (v, h)of 
the visible and hidden units has an energy [16] given by 

(3)      
,

(v, h) i i i i i j ij
i visible i hidden i j

E b v b h v h w
 

       

where iv  and ih  are the binary states of visual unit i  

and hidden unit j , ib  and jb  are their biases, and ijw is the 

weight between them.  
The states of the hidden units are then updated once 

more so that they represent features of the confabulation. 
The change in a weight is given by 

(4)      ( )ij i j data i j reconw v h v h        

where   is a learning rate, i j datav h   is the mean of the 

original w  training data and i j reconv h   is the mean of the 

reconstruction data. 

3.2. The structure of RVM 
Relevance vector machine is a sparse probability model 

based on support vector machine proposed by Michael E 
Tipping in 2001. Its training is carried on under Bayesian 
framework, so we can get the distribution of predicted 
values by regression estimate with RVM. Compared with 
SVM, RVM has the following advantages:  

(1) With RVM, we can get probability forecasts;  
(2) In the inference process, setting error parameter 

subjectively can be avoided;  
(3) The relevant vectors used for training are less than 

the SVM;  
(4) Kernel function has a greater range of choices for it 

need not satisfy the Mercer conditions.  
The biggest difference between RVM and SVM is that 

RVM turns subjective division into objective division under 
probability, which makes classification function reach 
likelihood function maximum for the training set.  

The output of RVM model is as follows:  

(5)      0
1

( ) ( )
m

j j
j

y x x  


   

where ( )j x is a non-linear kernel function, j  is model 

weights. The kernel function used in SVM must satisfy 
Mercer theorem but RVM doesn’t have the limitation.  
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Figure 1. The structure of the Autoencoder network. 
 
After defining the model (5) basis functions, we can train 

the model weights j with maximum likelihood method 

under Bayesian framework, which may avoid learning 
problems and improve model generalization ability. 
Therefore, RVM defines the priori probability distribution for 
each model weight:  

(6)      

1/ 2

21
( | ) exp

2 2
j

j j j jp


   


         
 

Where j  is hyper-parameter of the priori distribution of 

model weight j .  

For a given set of training samples 1{ , }N
i i ix t  , we can 

assume that the target value it is independent, and the 

noise of inputted data obey Gaussian distribution of which 
the variance is 2 . In this way, likelihood function of the 
given training sample set is as follows:  

(7)    
22 2 /2

2

1
( | , ) (2 ) exp

2
N

j jp t t    


      
 

Where 1 2( , , , )T
nt t t t    , 1 2( , , , )T

n       ,   is matrix of 

which the rows include the response of all kernel functions 
to input ix :  

(8)       1 2( ) 1, ( ), ( ), , ( ),i i i n ix x x      

Based on priori probability distribution and likelihood 
distribution, we calculate the posterior probability 
distribution of model weights with Bayesian method. The 
formula can be written as:  

(9)      
2

2
2

( | , ) ( | )
( | , , )

( | , )

p t p
p t

p t

     
 

  

The posterior distribution of model weight is multivariate 
Gaussian distribution, that is:  

(10)      2( | , , ) ( , )p t N      

Where 2 1( )T A        is covariance, A is diagonal 

matrix of 0 1( , , , )n      and 2 Tt     is mean value. 

The likelihood distribution of training target value can realize 
marginalization by integration.  

(11)      2 2( | , , ) ( | , ) ( | )p t p t p d          

In this way, we can get marginal likelihood distribution of 
the hyper-parameters:  

(12)      2( | , ) (0, )p t N C    

Here covariance 2 1 TC I A     .  
Finally, the estimated value of model weights in RVM 

method is given by the mean value of posterior distribution 
and it is a maximum posteriori (MAP) estimation. The MAP 
estimation of model weight depends on hyper- parameters 

a and noise variance 2  and its estimated value  and 
2

 can be obtained by maximizing the marginal likelihood 
distribution. The uncertainty of model weight optimal value 
reflected by posterior distribution may show the uncertainty 
of model predictions. For the given input value *x , the 
corresponding probability distribution of the output is as 
follows: 

(13)      
2 2 2* * * *( | , , ) ( | , , ) ( | , , )p t t p t x p t         

The formula (13) obeys the form of Gaussian distribution, 
that is:  

(14)      
2* * * *2( | , , ) ( , )p t t N y    

Where the predicted mean value * *( )Ty x  and the 

variance (uncertainty) 
2*2 * *( ) ( )T x x     .  

RVM solves the problem of parameters selection with 
significance under Bayesian framework which has wide 
applicability. Using RVM for regression prediction, we can 
obtain better predicted value and variance range. 

The whole modeling could be concluded in next steps: 

i 2

 

i

i 2

i
 

Figure 2. The structure of the RVM 
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The reason of combining forecasting systemic state 
variables in power systems with iterative estimation of state 
estimation is a main kind of method to solve the problem of 
state estimation. As a result, the problem of state estimation 
in power system can be regarded as a regression problem 
and RVM gets the approximation functions to estimate 
these systemic state variables. 

The predictive process of RVM can be shown simply as 
follows. 

x predicted y

 

Figure 3. Simple predictive process of RVM 
 

 
Figure 4. Framework based on Autoencoder-RVM 

 

3.3. The proposed method using Autoencoder-RVM 
Some surveyed data which always consist of power, 

voltage and current of every node and branch in the power 
network from SCADA/PMU system need to be sampled and 
standardized into state estimator. And the scale of the data 
become more and more complex, scale larger and 
dimensions higher. There are two problems remaining. 
Firstly, the time cost of training RVM to build the predictive 
model will become uncontrollable. Secondly, the precision 
and generalization ability will be influenced by the nonlinear 
character of the surveyed data at the same time. 

For above reasons, a pretreatment for the input surveyed 
data set has to be merged into the process of state 
estimation based on RVM. Some traditional methods such 
as PCA is a good treatment for dimensionality reduction, 
but relations of input data from SCADA/PMU system are 
nonlinear and the original topological structure of the 
original data cannot be kept. Autoencoder, which is a non-
linear dimensionality reduction method base on network, 
which can keep the original topological structure of the 
original data and deal with the nonlinear relationship among 
the input data well, maping the high dimension features in 
the input space to a new lower dimension space. This new 
method of state estimation based on Autoencoder and RVM 
can perform better in the control of sparseness and the 
predictive speed. 
The new procedure in state estimation proposed in this 
paper is shown as Figure 4. 
 
4. Case Studies 

In this paper, a proposed system is applied to IEEE14 
bus system to validate the new method’s performance. In 
the simulation case, system power flow calculation is used 
as the true result. As the measurement data in the system 
are susceptible to interference with white Gaussian noise, 
the data is added with the corresponding normally 
distributed random measurement error using as the 
simulated data. In most power system, PMUs are installed 
in the important power plants and important transformer 
substation. In this simulation case, PMUs are fixed in the 
transformer substation bus 4, 5 and power plant bus 1, 2, 3, 
6, 8, and other nodes bus are installed with SCADA. The 
state estimation program fits for the power system state 
variables by minimizing these errors. Ideally state 
estimation should run at the scanning rate of the telemetry 
system (at every two seconds). Due to computational 
limitations, most practical state estimators run every few 
minutes or when major changes occur. 

 
Figure 5. IEEE14 bus system 

 
4.1 Analysis of experimental data 

In this study, the number of analysed node is 6. In order 
to improve the prediction accuracy, there are dimensions 
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that are selected. Through Autoencoder, the dimensions 
are reduced to 60 dimensions. In the Autoencoder reduction 
process, 60 samples are used for training and 40 samples 
are for testing. The Figure 6 shows the errors of the 
reconstruction. 

 Figure 6. the errors of reducing the data dimensions. 
 

After 20 iterations, the average mean square error has 
become less than 0.1, and dimensionality reduction effect is 
ideal. After the data's dimension is reduced, RVM is used to 
estimate the system state. The Figure 7 is the contrast of 
estimated value and true value. The voltage in power 
system is transferred to p.u. voltage. Then it is normalized 
to [0,1] in our algorithm which is the Y axis in the figure. The 
Time axis represents the every two second the dynamic 
state estimation runs. 

Through figure 6, the Autoencoder fast reduce the 
dimensionality of data and RVM is applied to predict state 
value of power system. The output value of Autoencoder is 
between [0,1] and then is used as input of Rvm. The 
Autoencoder is advanced and non-linear method for 
reducting dimensionality and principle information relating 
data is preserved by the method. 

 
Figure 7. Estimated result of Autoencoder-Rvm for voltage 

 
From the Figure 7, we can conclude that estimated value 

can better fit for the true value. In order to make a 
comparison, RVM is used as the state estimator. Estimated 
result is described in Figure 8. 

 
Figure 8. Estimated result of Rvm for voltage 

 
4.2 Contrast of results 

The results of the experiment show that the predictive 
error of Autoencoder-RVM is almost the same compared 
with RVM. The prediction performs better at smooth curve 
than the curve in conditions when abrupt changes occur. At 
the same time, prediction of angle doesn’t perform as well 
as prediction of voltage since angle always changes more 
greatly than voltage in power system. 
Tab.1 shows the results of prediction performance and 
computing time for training and testing data by SVM using 
all features. 
 
Table 1. Comparison of experiment results 

State 
estimator 

Error 
(RMS) 

Trained 
Time(ms) 

Tested 
time(ms) 

Used 
time(ms) 

Rvm 0.046 860 82 942 
Autoencoder-

Rvm 
0.051 660 76 736 

 

Two conclusions are gained as follows: 
1. The training time and testing time are decreased by using 
Autoencoder-Rvm because Rvm algorithm can implement 
simply without iterations. 
2. The Autoencoder-Rvm has better performance in sparse 
solutions and does not decrease the real time performance. 

Sample set is rolled by time and dimensionality is 
reduced during every prediction and total time cost will 
decrease to some extent. But the precision performance of 
prediction is almost the same. Considering the real-time 
performance of dynamic state estimation and computing 
capability of modern computers, the time precision 
performance of prediction is acceptable. 

 
5. Conclude 

Autoencoder for dimensionality reduction and RVM for 
regression are introduced successfully into the state 
estimator and a satisfactory performance is obtained. From 
the theoretical analysis and the experimental results, we 
can see that the pre-treatment of Autoencoder could 
efficiently deal with the nonlinear feature of initial data and 
reduce their dimensionality and the following training time 
cost of RVM. Autoencoder - RVM has powerful learning 
ability, good generalization ability, sparse solution and low 
dependency on sample data. The state changes of a power 
system can be tracked quickly and precisely. This indicate 
that predictive control based on Autoencoder - RVM has 
potential applications in realizing nonlinear control. With 
more and more new Machine Learning algorithms being 
introduced into the field of state estimation, the dynamic 
state estimation in power system will have a new 
complexion. 
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