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Abstract. Robustness of servo control systems in terms of uncertainties and disturbances is still an open issue in feedback control. The concept of 
an uncertain LTI system is essential for robust control. Model uncertainty arises when system parameters are not precisely known, or can vary over 
a given range. The article presents a robust velocity and position controller for a servo system with a DC-motor. The aim of the work is to synthesize 
a feedback control structure with a controller in the direct branch, with which the robustness and stability performance will be ensured. For the design 
procedure a mixed-sensitivity approach with an additional time performance index is used. The time performance index introduces a subsequent 
criterion in the mixed sensitivity approach to ensure accurate dynamic performance of the feedback loop. For simplification of the controller structure 
the evolution optimization will be employed. The control strategy has been tested on real system with use of TI-DSP microcontroller.   
 

Streszczenie. W artykule opisano metodę sterowania pozycją i prędkością w zamkniętej pętli dla serwomechanizmu z silnikiem DC. Dla 
zapewnienia niezawodności i stabilności algorytmu zastosowano optymalizację typu mixed-sensitivity z dodatkowym wskaźnikiem 
skuteczności w czasie. W celu uproszczenia struktury sterowania zastosowana zostanie także optymalizacja ewolucyjna. Przeprowadzono 
badania eksperymentalne. (Zastosowanie optymalizacji współczynników wagowych funkcji czułości oraz indeksu skuteczności w czasie 
w sterowaniu serwomechanizmem).  
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Introduction 
The purpose of robust closed-loop control is to ensure 

efficient functioning of the controlled system, so that it 
functions within the set design criteria, performs disturbance 
rejection and compensates for potential structural changes 
in the controlled system. Most robust controller design 
procedures are based on a mathematical model of a real 
system. Most often the mathematical model is presented as 
a linear time invariable system – LTI, for which it is much 
easier to develop general design procedures or set the 
qualitative control criteria. Linear mathematical models are 
mostly the result of identification methods [1] or procedures 
of linearization of non-linear models and are merely 
approximations of real systems.  Model uncertainties mostly 
occur because of imprecise identification procedures, poor 
knowledge of the process's physical background, model 
simplifications and the inability to include external 
influences, which are mostly random in nature. LTI models 
thus describe the dynamics of the real system only under 
one operation condition and with certain parameter 
uncertainty [2],[3]. 

It often occurs that the controller, designed by classic 
design methods, in reality does not fulfil the set control 
conditions. Standard design methods are mostly based on 
graphic approaches (Bode plot, Nichols plot, Root-locus 
etc.). The mentioned methods do not directly consider 
robustness criteria and thus provide no guarantee that the 
system will have satisfactory performance in the presence 
of disturbances or uncertainties. Robust control design 
methods ensure this. The synthesis of closed-loop system 
can be carried out so that we consider robustness criteria in 
the design procedure [2]. 

This article will present the design procedure for a 
robust velocity and position controller of a servo system 
with the mixed sensitivity approach-MxSA. The mixed 
sensitivity approach is a closed-loop system synthesis 
procedure, in which the model's uncertainty, external 
disturbances and performance characteristics are described 
by weight functions.  
The choice of weight functions is crucial, as they influence 
the efficiency of the closed-loop system and consequently 
the controller structure [4],[5]. 

Robust stability in the mixed sensitivity approach is 

assessed on the basis of uncertainty models [6], where the 
weight function represents the possible deviation of the 
model from the nominal value. Uncertainty models describe 
different uncertainty types, e.g. high or low frequencies 
uncertainties, parameter uncertainties, etc. Exact 
uncertainty weights can be derived directly from uncertainty 
models, where proper and stable functions must be ensured 
[7],[8],[9]. Direct derivation of weight functions from the 
uncertainty model often results in weights which do not fulfil 
the stated conditions. This article will present a method for 
transformation of weights which have the same frequency 
characteristic as directly derived weights, they are stable, 
proper and of low order. To this end we will use the 
optimisation algorithm Differential Evolution – DE with 
spectral objective function [8],[10]. Additional weight 
functions, representing the desired system dynamics or 
other limitations of the closed-loop system, can be 
determined following the recommendations [2]. Following 
the recommendations is very non-transparent and requires 
many iterations and experience on the side of the designer. 
For this purpose we will also discuss in this article the time 
performance index, which we will determine using the DE 
algorithm. With the time performance index we will precisely 
describe the dynamics of the system, and we will consider it 
in the mixed sensitivity approach synthesis as an additional 
performance criterion.   

The aim of this article is to present robust controller 
synthesis with the mixed sensitivity approach, and  
particularly to ensure robust stability of the system in terms 
of possible parameter deviations and good compensation 
for external disturbances in case of load change of the 
servo system. With weights optimisation we also want to 
ensure simple regulator structure, because such structure is 
more suitable for real time operation [8]. 
 

Uncertainty models  
Uncertainty models describe the total set of possible 

uncertainties. Every uncertainty model has its characteristic 
properties, with which we can determine the uncertainties 
alongside the entire frequency characteristic of the control 
object. Let us assume a set of models , where P0 is the 

nominal model and P∆ is the highest uncertainty model, 
both belonging to the set . The model uncertainty is 
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described with the weight function ∆W, which must be 
proper and stable.     

 

P ( s )R( s )

 
Fig.1. Feedback-loop with the uncertainty model P∆ 
 
Multiplicative uncertainty  

With the multiplicative uncertainty model can be 
described high-frequency dynamics of the plant and the 
uncertainty of zeros P0 in the area Res>0. 

 
Fig.2. Multiplicative uncertainty model 
 

(1) 1
0 0MW ( s ) ( P ( s ) P ( s ))P ( s )    

 

Additive uncertainty  
Additive uncertainty model is appropriate for modelling 

the neglected high-frequency dynamics and the uncertainty 
of poles and zeros of the control plant P0 in the areas 
Res>0 and Res<0. 

 
 

Fig.3. Additive uncertainty model 
 

(2)          0AW ( s ) P ( s ) P ( s )    
 
Inverse uncertainty 

Inverse uncertainty model is suitable for modelling 
uncertainty at the low frequencies and the uncertainty of the 
control plant P0 model's poles in the area Res<0. 

 

 
Fig.4. Inverse uncertainty model 
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To determine the weight ∆W let us suppose the 
following. The nominal model P0 has the same unstable 
poles as the uncertainty model P∆ . The poles of P0 cannot 
be cancelled with zeros of the weight function ∆W. 
 

Robust stability assessments under uncertainty models 
Controller R is robustly stable, if it ensures stability for 

all the models in set . System robustness is assessed on 

the basis of the weight function ∆W and the uncertainty 
models, where Nyquist curve is the stability limit. The 
distance between the key point -1 for system in Figure 1 
and its closest point of the Nyquist curve of the transfer 
function is 1/||S||∞ [11],[12] and the following holds true: 

(4) 
        

1

0P ( j )R( j ) P ( j )R( j ) S    
 

   

If condition (4) is fulfilled then controller R ensures 
stability for the entire set of models  [2],[13]. The 

conditions of robust stability for different uncertainty models: 
- multiplicative uncertainty: 1MW T


   

- additive uncertainty: 1AW RS


   

- inverse uncertainty:
 

0

1

1

Ii

I

W S

W P S




 

 
 

where transfer functions S and T are sensitivity and com-
plementary sensitivity of the closed loop system in Fig.1. 

 

Weight preparation and optimization 
Direct derivation of weights ∆W’ from uncertainty models 

(1),(2),(3) often results in weights that do not fulfil the 
condition of stability or are not a proper function.  In such a 
case weights must be designed so that such weights ∆W 
are found, which have the same frequency characteristic as 
the directly derived weights ∆W’ and which fulfil the 
abovementioned criteria. To determine the weights we used 
the evolution algorithm called Differential Evolution – DE 
[14], which is appropriate for optimisation of multi-objective 
functions. The starting point of the problem is the 
determination of the DE objective function, which enables 
approximation of weight's  frequency characteristic. The 
property of the objective function influences the solution and 
the convergence of the approximation. This article 
discusses the approach with an ISE (integral square error) 
type of the convex objective function, 
(5) 

    
       2 2

2 2 2 1
1 1

0 0

1
aprox aprox

f W ' W d e d , W W ' ,
 

     


          

where ∆W’ is the derived weight,  ∆W is the approximated 
weight and ωaprox is the approximated frequency window. 
The solution of the problem is mine1(f1)=0. To the objective 
function f1 criterion f2 is added. The criterion of the function 
f2 ensure the stability of the approximated weight ∆W 
(6),[15]:   

(6) 

   
       21 2

2 2

0 0

0
aprox aprox

f W j W j d e d ,
 

    


         

The composed objective function is equals to fspet, 
(7) 

   
   

1
1 2 0spet

e
f min f f .    

The same approach is used to determine the weight of 
the time performance index, where the weight Wtime of 
minimal structure from the given time response is assessed. 
The weight function is equals to: 

(8) 

    
       

1 1
2 2

3 3

0 0

t t

timef H t W t dt e t dt ,     

where H(t) is the time reference characteristic and Wtime is 
the sought performance weight. To the objective function f3 

the stability criterion (6) is added. The entire objective 
function is equals to: 
(9) 

    
   

3
3 2 0time

e
f min f f .    

The approximate weight Wtime(jω) is used further as a 
robustness criterion minω||WtimeS||∞ [2],[3],[6]. 

 

Mixed-sensitivity approach for the robust controller 
Using uncertainty weights ∆WA, ∆WM, ∆WI and the time 

performance index Wtime, the robust controller synthesis can 
be determinate on the basis of the mixed sensitivity problem 
[2],[3].  

With weights ∆WI,∆WA,∆WM  Fig. 5. we can describe 
uncertainties for individual models or simply describe the 
frequency characteristic of the sensitivity function e/v → 
z1/v, the controller output u/v→ z2/v or complementary 
sensitivity y/v→ z3/v, where the corresponding weights are 
marked as ∆WI ↔ Wtime, ∆WA ↔ W2, ∆WM ↔ W3, and 
||Wtime∆WIi ||<1, ||W2∆WA ||<1, ||W3∆WM ||<1 is hold true. 
The solution of the mixed sensitivity problem is the 
optimisation of the norm  ∞, where:  
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(10) 
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The optimal solution is equals to: 
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Fig.5. Mixed sensitivity problem 
 

The synthesised controller R fulfils the condition 
Rϵ∞. In case of a high order controller structure we carry 

out order reduction on the basis of Hankel singular value 
decomposition-HSV [2],[4],[15], where Rlow ϵ∞ is also 

hold true. 
 

Synthesis of the robust velocity controller 
The nominal transfer function of the DC servo engine 

Escap 28D11-219E: 
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The uncertainty weights are determined by deviation the 
engine coefficients: the change of resistance R(±15%), the 
change of load which results in the change of inertia 
Jn(±30%), the change of ke, km (±10%) because of nonlinear 
magnet characteristic, etc. 

 
Fig.6. Frequency characteristic P0ω  with changing parameters R, Jn, 
ke, km 

 

The transfer function of the highest uncertainty ∆Pω:
 

-8 2

1.8

2.68 10 s + 0.00023s + 0.023
P ( s ) 


 

The uncertainty weights are determinates according to 

criteria (1),(2),(3).
 

7

2 5

2.995 10

s + 83342s + 7.286 10AW ( s )


 


, 0 8MW ( s ) .  , 

8 21 2 10 0 0001 0 008747IW '( s ) . s . s .      , 0 444IiW ( s ) . .    
 

Both weights, except for ∆WI
' , are stable and proper. 

Weight ∆WI
' is transformed into a stable and proper weight 

∆WI  with the algorithm DE and objective function (5),(6),(7) 
and frequency window ωaprox =0.01-105rad, 

-5 2 -16 -16

2 -4 -11

1 10 s +1 3 10 s + 9.4 10

s +1 10 s + 7.2 10I

.
W ( s ) .

  
 

   
From control requirements: settling time ts<0.09s, 

overshoot Mp<2% and steady-state error es≈0, we 
determine the proper and stable weight Wtime, where 
||Wtime∆WIi ||<1 is hold true (8),(9). 

12 4

2 -5

s +184s +1.265 10

s +184s +1 10timeW ( s ) .


 
     

The solution of MxSA with weights ∆WA, ∆WM, ∆WI, 
Wtime and HSV: 
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Conditions of robust stability and the time performance 
index: 0 799MW T .


  , 0 786AW RS .


  ,

0 0 437IW P S .


  ,

0.455timeW S  

 . The values of the norms show that the 

closed-loop system with velocity controller Rω fulfils the 
robust stability and performance conditions. 
 

Synthesis of the robust position controller 
Nominal transfer characteristic of a DC servo motor for 

position control: 
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Determination of the highest uncertainty transfer 
function ∆Pφ with deviation of DC-engine parameters 
R(±13%), Jn(±35%), ke, km (±12%): 

 
Fig.7. Frequency characteristic P0φ  with changing parameters R, Jn, 
ke, km 

 

The transfer function of the highest uncertainty ∆Pφ: 

-8 3 2

2

2.98 10 s + 0.000207s + 0.024s
P ( s ) . 

  
Uncertainty weights determined according to criteria 

(1),(2),(3):
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Weights  ∆WA

', ∆WI
'  are transformed into proper and 

stable functions ∆WA
 , ∆WI  with the algorithm DE (5),(6),(7) 

and frequency window ωaprox =0.02-104rad. 
7
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8234 7 12 10 0 0012A 3
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
 

     
-5 2 -16 -15

2 -4 -11

1 5 10 s +1 27 10 s +1.02 10

s + 0.9 10 s + 6.992 10I

. .
W ( s ) .

  
 

 
 

From control requirements; settling time ts<0.05s, 
overshoot Mp<1% and steady-state error es<5%, we 
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determine the proper and stable weight Wtime, where 
||Wtime∆WIi ||<1 is hold true (8),(9). 

12 5

2 -5

s + 920s + 2.612 10

s + 920s +1 10timeW ( s )


 
     

 

The robust position controller Rφ with weights ∆WA, 
∆WM, ∆WI, Wtime and HSV simplification: 

5 4 9 3 12 2 14 6

5 4 4 8 3 11 2 14 6
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Conditions of robust stability and the time performance 
index: 0 89MW T .


 , 0 94AW RS .


 ,

0 0 62IW P S .

 , 0.63timeW S  


 . 

According to the norms values position controller Rφ fulfils 
the conditions of robust stability and performance. 
 

Experimental results 
The test of robust velocity and position controller was 

performed on the embedded system TI-DSP 
TMS320F28335P with sampling time Ts=1.3ms. 

 

 
Fig.8. Angle speed control 
 

 
Fig.9. Velocity controller output, voltage (V), current (A) 
 

 
Fig.10. Position control 

 
Fig.11. Position controller output, voltage (V), current (A) 
 

The control results from Fig. 8–11 confirm that the designed 
velocity and position controllers, Rω and Rφ respectively, 
fulfil the set robustness and control dynamics criteria. 

Conclusions 
This article presented the synthesis of a robust controller 

of a servo system by designing weights ∆WA, ∆WM, ∆WI, 
Wtime. The purpose of this article is to present the process of 
designing weights, which are determined directly from the 
uncertainties model, as only in this way we can keep the 
precision of the uncertainty description. Weights 
transformation was performed with the evolution algorithm 
DE and the composed objective function. We also added a 
performance weight Wtime to weights ∆WA, ∆WM, ∆WI , with 
which we have determined the dynamics of the closed-loop 
system. The controller synthesis was based on assessing 
the robustness and keeping the desired system dynamics 
with the mixed sensitivity method, where weight functions 
∆WI,∆WA,∆WM or W1,W2,W2  can have different meanings. 
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