
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 5/2013                                                                                 11 

Renato RIZZO1, Amedeo ANDREOTTI1, Dario ASSANTE2, Antonio PIERNO1, 

University of Naples “Federico II”, Italy (1), International Telematic University of Rome “Uninettuno”, Italy (2) 
 
 

Characteristic Impedance of Power Lines with Ground Wires 
 
 

Abstract. In the paper the characteristic impedance of a power line equipped with shield wires is analysed. The solution to the problem is found by 
means of a non-symmetric algebraic Riccati equation. Solutions are presented for practical line configurations.  
 
Streszczenie. W artykule przedstawiono analizę impedancji charakterystycznej linii elektroenergetycznej z ekranowanymi kablami w praktycznym 
zastosowaniu konfiguracyjnym. W analizie wykorzystano niesymetryczne równanie Riccatiego. (Impedancja charakterystyczna linii 
elektroenergetycznej z uziemieniem). 
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Introduction 

In power lines, shield wires are passive wires which are 
periodically grounded, and their main role is to intercept 
direct lightning strokes which could cause overvoltages 
higher than the line lightning withstand level. They are 
installed above the phase conductors, and, if properly 
placed, assure lightning protection. It must be noted that 
this direct protection is successful on power transmission 
lines,  which are usually characterized by values of critical 
impulse flashover voltage (CFO) much higher compared to 
distribution lines. The direct stroke performance of 
distribution lines is practically unaffected by the presence of  
shield wires, since, in case of a direct strike, a 
backflashover will occur in most of the cases due to the 
ground potential rise. In distribution lines shield wires can 
still play a role since, thanks to their coupling with phase 
conductors, can reduce the induced voltages produced by 
indirect lightning. 

Many studies have dealt with the effectiveness of shield 
wires on medium and low voltage overhead distribution 
lines (e.g., in [1]-[7]) and the reduction in terms of induced 
overvoltages, compared to the results obtained for 
unshielded lines (e.g. [8]-[10]), is significant; the authors too 
have deeply investigated the problem of lightning induced 
overvoltages on unshielded lines [11]-[16]. In order to 
evaluate the induced overvoltages on shielded lines, and to 
estimate the role of the periodical grounding in the 
overvoltage mitigation, an important step is the evaluation 
of the characteristic impedance of the power line. Although 
periodical grounding of shield wires significantly modifies 
the characteristic impedance, this aspect is usually 
underestimated or neglected. In this paper, by making use 
of the transmission line (TL) approximation [17], we 
examine the problem of a multiconductor transmission line 
(MTL), with one conductor periodically grounded, as shown 
in Fig. 1, and we will show two ways to compute the 
characteristic impedance. The examined MTL has m-1 non-
grounded wires, the m-th wire is the grounded one. 

The paper is organized as follows: we will first formulate 
the problem in terms of a Riccati equation, then two 
different solution methods will be shown along with some 
numerical results, finally conclusions will be presented. 

 
Problem Formulation 

We define  zV  and  zI  the voltages and currents 

vectors of the MTL, where z is the distance evaluated from 
the line origin. The most relevant distances for observing 
voltages and currents are those corresponding to each 

grounding point, we will call them  nLn VV   and 

 
Fig.1. Line configuration 
 

 nLn ΙI  , with n = 0, 1, 2, … and where L is the distance 

between two following grounding points, i.e. the length of an 
elementary MTL cell. Then we call as r, l and c the m × m 
per unit length resistance, inductance and capacitance 
matrices of the MTL, and define Z = r + jωl and Y = jωc. 
The characteristic impedance of a non-grounded MTL is 

given by .1
0 YZYZ   

If we consider a single cell of a non-grounded MTL, its 
chain matrix can be expressed as [18] 
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Being .YZU L  
Modal variables are commonly used in MTL theory in order 
to simplify the analysis. To this purpose we can consider a 
similarity transformation, in order to diagonalise the product 
YZ. Since in our case lc = 1/c2, being c the speed of light in 
the vacuum, the only product cr has to be diagonalised. It is 
possible to introduce the similarity transformation matrix T 
so that T-1crT = Γ2, being Γ a diagonal matrix. Since c and 
r are real, symmetric and positive definite matrices, then T 
and Γ are real matrices. It is then possible to express the 
product YZ as 
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being 1 the identity matrix. 
It is interesting to note that for the special case of 

lossless conductors, Γ vanishes and so Ψ is an identity 
matrix at every frequency. In this case the best choice for T 

is T = 
1

lc . 
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Then we can define the modal voltages and currents, 

given respectively by V
~

= -jc/ωT-1YV  and I
~

= T-1 I , that 
turn (1) into 
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being u = Lω/c. 
The transformation in (3) decouples the chain matrix 
equations and simplifies the following calculations. It is 
worth noting that in the modal domain the characteristic 
impedance matrix of the non-grounded MTL becomes a 
diagonal matrix too, and in particular 
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The chain matrix at the grounding point is, in the modal 
domain 
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being G
~

= -jω/cT-1GY-1T, and G an m×m matrix where all 
the elements are zero but the last one, Gm,m = 1/Rg, being 
Rg the grounding resistance. While G is almost an empty 

matrix, G
~

 is a singular real positive full matrix. So the chain 
matrix of a single cell of a grounded MTL is given by the 
product of the chain matrices (3) and (5), obtaining  
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It is possible to define cZ
~

as the characteristic impedance 

matrix of the periodically grounded MTL in the modal 
domain, related to the actual characteristic impedance 

matrix by the relation cZ = -jω/cY-1T cZ
~
T-1according to (4). 

Being the structure semi-infinite, it is clear that voltages and 

currents are linked by the relation ici IZV
~~~

 , for every i = 

0, 1, ... . Enforcing this relation in (6), and considering that it 
has to be valid for every set of voltages and currents, by 
some manipulations it is possible to obtain a second order 

equation where the only unknown is cZ
~

 ,namely: 
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where 
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~

cos  . 
 

This equation is a non-symmetric algebraic Riccati equation 
(NARE) with complex coefficients, probably one of the worst 
cases among the Riccati equations. Such a problem has 
been widely studied in literature and some methods have 
been proposed to solve it numerically [19], [20]. Before 

presenting solution methods for this equation, a 
consideration on the MTL per unit length parameters 
frequency dependence has to be done. If we suppose that 
the three parameters are frequency independent, the 
diagonalisation matrix T is frequency independent too. The 
diagonalisation of YZ has to be performed just once and 
the method can be applied easily. A frequency dependence 
of the line parameters can be introduced anyway with 
minimum effort, for instance to take into account the skin 
effect into r. In this case the proposed method can be 
applied as well, but the diagonalisation matrix T is 
frequency dependent and so the diagonalisation of YZ has 
to be repeated at each frequency step. 
 
Solution of the Riccati equation 
Now we will present two ways of solving the Riccati 
equation, which will then be implemented; the first one is an 
iterative algorithm based on a Newton-Raphson method 
[21], [22], the second method leads to a straightforward  
computation of the solution by means of the decomposition 
of the Hamiltonian matrix of the equation [23]. In order to 
implement the iterative algorithm based on a Newton-
Raphson method, it is preferable to operate with real 
equations. By introducing the unknown resistance and 

reactance matrixes from ccc jXRZ
~~~

 , the NARE (7) 

can be split into two second order matrix equations. If the 
line has m conductors, 2m2 real equations are obtained by 
this process. Anyway, due to the reciprocity of the 
characteristic impedance matrix and so to its symmetry, 
only m(m + 1) equations are needed. If we consider a 
general equation 
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an iterative procedure can be set-up as follow 
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Since the equations includes quadratic terms at most, the 
computation of the derivatives is simple. In a frequency 
sweep, the best starting point for the iteration at a given 
frequency is the solution found at the previous frequency 
step, adopting a step frequency not so large compared to 
the variations of the characteristic impedance. In case of 
single frequency, the starting point has to be considered 
carefully since the problem admits multiple solutions. The 
second method refers to non-iterative methods. Most of 
them are based on the decomposition of the Hamiltonian 
matrix of the problem. The Hamiltonian matrix of (7) is 
defined as 
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If it possible to decompose the Hamiltonian matrix as 
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of H. The decomposition (15) can be performed in different 
ways, a diagonalisation of H is the preferable solution since 
it doesn’t require a significant computational effort. More 
generally a Jordan decomposition can be adopted; this 
method includes also the cases when H cannot be 
diagonilized. A Schur decomposition can be used as well, 
but it requires higher computational effort, however, the 
algorithms are more stable than the ones implementing the 
Jordan decomposition. In order to analyze and evaluate 
these methods, some numerical simulations are now 
performed. The line geometry considered for the numerical 
simulations is a two-conductor line made by a non-
grounded wire at an height of 14.8 m, located beneath a 
periodically grounded wire at an height of 16 m (these are 
typical heights of an Italian power transmission line). The 
cross section and the per-unit length resistivity are 148.5 
mm2 and 0.2282 Ω/km respectively, for the grounded cable, 
and 227.8 mm2 and 0.1576 Ω/km for the lower cable. A 
reference length L = 100 m is assumed between two 
following grounding points. A grounding resistance of 1 Ω, 
10 Ω and 100 Ω has been considered. The characteristic 
impedance has been computed by both methods, and 
relative difference between the two is always lower than 
1•10-13, that proofs that the two methods give practically the 
same solution. Further, by substituting the solutions into (7), 
the norm of the residue is lower than 4•10-13 compared to 
the norm of the solution and that proves the correctness of 
the solution. In Figures 2-7 the real and imaginary parts of 
the different terms of the characteristic impedance are 
presented, as function of the frequency and for different 
values of the grounding resistance. By making the different 
simulations, we observe an important result: either including 
or omitting the per unit length resistance in the MTL 
parameters has no observable effects on the characteristic 
impedance. The significant result is that we can always 
simplify the problem by considering the line as lossless.  
From a strict mathematical point of view, we observe that 
for p.u.l. resistances higher than 10 Ω/km differences show 
up for the characteristic impedance, but these values are 
not realistic and so we can absolutely consider the MTL as 
lossless. 
 
Conclusions 

The problem of the characteristic impedance of a 
multiconductor transmission line with one conductor 
periodically grounded has been discussed and formulated 
in terms of a NARE equation. Two methods have been 
presented and applied in order to solve the equation. 
Further investigations are required to test and compare the 
robustness and efficiency of the two methods for more 
complex MTL configurations. 

 
 

Fig.2. Real part of 11Z  

 
Fig.3. Imaginary part of 11Z  

 
Fig.4. Real part of 12Z  

 
Fig.5. Imaginary part of 12Z  

 
Fig.6. Real part of 22Z  
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Fig.7. Imaginary part of 22Z  
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