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Suppression method of partial-discharge interference signal 
based on the combination of morphological filters and complex 

wavelet transform 
 
 

Abstract: Solving the periodic narrowband interference and suppression of white noise during the actual detection of partial discharge (PD) are 
difficult. In this paper, a method of suppressing the interference signal method based on the combination of morphological filters and complex 
wavelet transform is proposed. Generalized morphological filters based on the principle of mathematical morphology were structured and set as a 
pre-filter unit to realize pre-treatment of the original PD signals, and complex wavelet transform was then employed to process the PD signals. 
Finally, denoised PD signals were obtained. Applying this method to deal with the noise in the simulation and acquisition of PD signals, the results 
showed that the method can restrain effectively the PD periodic narrowband interference and white noise. Compared with the same wavelet base of 
the wavelet and the complex wavelet denoising methods, this method reduces energy loss and retains well the PD signals characteristics.  

 
Streszczenie: W artykule opisano metodę tłumienia zakłóceń (zakłócenia wąskopasmowe, biały szum) w sygnałach, w przypadku wykrycia 
wyładowań niezupełnych. W rozwiązaniu wykorzystano kombinację filtrów morfologicznych, działających jako pre-filtr i złożoną transformatę falkową 
do dalszej obróbki sygnałów. Wykonano badania symulacyjne, potwierdzające skuteczność filtracji. (Tłumienie zakłóceń od pochodzących od 
wyładowań niezupełnych – filtry morfologiczne i złożona transformata falkowa). 
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Słowa kluczowe: zakłócenia wąskopasmowe, biały szum, morfologia matematyczna, złożona transformata falkowa, metoda tłumienia. 
 
 

Introduction 
High-voltage electrical equipment partial-discharge (PD) 

detection is the key in obtaining real and effective PD 
signals [1]. Field detection of PD signals is very weak and is 
often overwhelmed by surrounding interference signal, 
leading to serious distortion in the PD signal-detected 
waveform and presenting great difficulties in PD detection. 
Therefore, effective suppression of interference signals is 
vital. 

The frequency characteristics of interference signals can 
be divided into periodic narrowband interference, random-
pulse interference, and white noise. The periodic 
narrowband interference mainly includes power system, 
carrier communication, and high-frequency protection signal 
interferences caused by radio interference. Such 
interference waveform is usually a sine wave with a fixed 
resonant frequency and bandwidth [2]. The random-pulse 
interference waveform is very similar to a PD waveform [3], 
which includes corona discharge at the high-voltage side of 
electrical equipment, pulse interference caused by grid 
switching, and closing or disconnecting silicon controlled 
rectifier device [4]. White noise is primarily caused by the 
thermal noise of the device [5]. 

Currently, interference signal suppression methods 
include the following: digital filter based on Fourier 
transform method [6], threshold filtering method based on 
wavelet transform [7], a combination algorithm based on 
morphological filter and Fourier transform [8], a combination 
algorithm based on morphological filter and wavelet 
transform [9], and so on. The digital filter method based on 
the Fourier transform results in higher energy loss to the 
original signal, and when new narrowband interference 
appears or the interfering signal center frequency changes, 
the parameters of the filter becomes invalid. The threshold 
filtering method based on wavelet transform can effectively 
suppress narrowband cycle interference and white noise, 
but some defects are still present, such as band aliasing, 
leakage effects, serious loss of the original signal energy, 
and difficulties in the integrity of parameters. For the 
combination algorithm based on morphological filter and 
Fourier transform and the combination algorithm based on 
morphological filter and wavelet transform, the denoising 

effect is better than that of a single-filter algorithm. 
However, the former has a large energy loss and less 
effective noise suppression, whereas in the latter, signal 
distortion is more serious, and the stability is not 
satisfactory. 

This paper presents a combination of the morphological 
filter and complex wavelet transform as interference signal-
suppression method. The method uses non-linear 
mathematical morphological filters as PD narrowband 
periodic interference pre-filter unit. It inhibits periodic 
narrowband interference and white noise using complex 
compactly supported biorthogonal wavelets. The results of 
denoising of the PD signals from simulation and the field 
indicated that this method can effectively suppress periodic 
narrowband interference and white noise. 

 
Morphological Filters Based on Mathematical 
Morphology 
(A). Basic Principle of Mathematical Morphology 

Mathematical morphology [10] is a digital image 
processing method, whose basic idea is the search for 
information using a probe, called structural element. When 
the probe moves, the mutual relationship among various 
parts can be examined. These probes can directly gather 
knowledge to detect the structural characteristics. 
Grayscale images are generally used to define a real-
valued function on a continuous or digital space. For the PD 
signals, the sampling signal is simply a real-value of a 
corresponding function; thus, it can be a gray morphological 
transform that analyzes and process the signal. 

Mathematical morphology contains four basic 
operations, namely, expansion, corrosion, morphological 
opening, and morphological closing. f (n) is defined in {0, 1, 
2,...... , N-1} of the original signal in one dimension, g (N) is 
defined in {0, 1, 2,...... , M-1} structural elements, and their 
origin is defined as zero. The f (n) of the inflation and 
corrosion operations on g (n) is expressed in Eqs. (1) and 
(2). 

(1)   
0,1,..., 1
0,1,..., 2

( )( ) max { ( ) ( )}
m M
n N M

f g n f n m g m
 
  

     
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(2)   
0,1,..., 1
0,1,...,

( )( ) min { ( ) ( )}
m M
n N M

f g n f n m g m
 
 

    . 

By combining dilation and erosion, f (n) of the 
morphological opening and closing operations on g (n) can 
be obtained, as expressed by Eqs. (3) and (4), respectively. 

(3)   ( )( ) (( ) )( )f g n f g g n    

(4)   ( )( ) (( ) )( )f g n f g g n   . 

The fundamental role of the opening and closing 
operations is image smoothing. The opening operation 
eliminates the peak noise, removes the signal edge of the 
isolated spots and glitches, and inhibits positive pulse 
signal. The closing operation suppresses and eliminates the 
trough noise, fills crack and loophole signals, and inhibits 
negative pulse signals. Therefore, PD signals in 
narrowband interference can be removed effectively by 
selecting the most appropriately constructed structural 
element morphological filter. In particular, when the 
interference frequency band is wider and overlaps with the 
fundamental frequency, better filter characteristics can be 
obtained. 
(B). Structure of the Morphological Filters 

Morphological filters are based on the morphological 
opening and closing operations, which can be used to 
construct open–close filters, close–open filters, hybrid 
filters, and alternating hybrid filters, such as those shown by 
Eqs. (5)–(8). 

(5)   [( ) ( )]( ) ( )( )f oc g n f g g n    

(6)   [( ) ( )]( ) ( )( )f co g n f g g n    

(7)   
( )( )

[( ) ( )]( )
2

f g f g n
f hf g n




 
  

(8)   
[( ) ( ) ( ) ( )]( )

[( ) ( )]( )
2

f oc g f co g n
f ah g n


 . 

Here, oc and co are close–open and open–close alternating 
filter operations, hf stands for hybrid filter operation, and ah 
represents alternating hybrid filter operation. 

Shrinkage in the opening operation in the open–close 
filter causes a decrease in its output, whereas expansion in 
the closing operation in the close–open filter leads to 
increase in its output amplitude, resulting in migration 
phenomenon of positive and negative pulse statistics in the 
two filters and suppression of the noise effect. Therefore, 
open–close and close–open filters consisting of alternating 
hybrid filter can be used to filter white noise and pulse 
noise, as defined in Eq. (9). 

(9)    
{[( ) ( )]( ) [( ) ( )]( )}

( )
2

f oc g n f co g n
F n


  

(C). Selection of Structural Elements 
Morphological filtering depends not only on the 

morphological transformation of the form but also on the 
size and shape of the structural elements. Only the size and 
shape of the structural elements that match the signal can 
be maintained. 

The geometrical shapes of the structural elements are 
generally very simple, such as flat (straight line) and convex 
(circle or triangle) structural elements. The dilation and 
erosion operations of the flat structural elements [11] 
assume the local maximum and minimum values and very 
effectively suppress the narrowband periodic interference 
and white noise in the PD signals. Therefore, the 
constructed flat structural element morphological filter is 
selected. 

For the morphological filter, the longer the structural 
element is and the more complex the shape is, the larger is 

the amount of computation. Usually, the length of the 
structural elements is less than the minimum cycle of the 
useful signal waveform but greater than the length of the 
noise. By analyzing the length of the PD signal and the 
noise, the ultimate length of the structural elements is 5. 

 

Integration of Morphological Filter and Complex 
Wavelet Transform Denoising Methods 
(A). Structure of Complex Compactly Supported 
Biorthogonal Wavelets 

Wavelet filter h(n), g(n) is related to the amplitude–
frequency characteristics only and is independent of the 
phase–frequency characteristics. When filter h (n), g (n) 
satisfies the complex biorthogonal wavelet conditions, the 
filter is a complex wavelet filter [12, 13]. Therefore, by 
maintaining the amplitude–frequency characteristics of a 
real wavelet filter, a change in its phase–frequency 
characteristics can be obtained having the same 
characteristics as that of the complex wavelet (biorthogonal, 
compactly supported, vanishing moments, regular, and so 
on). Usually, filter h (n) can be expressed by Z 
transformation, as shown in Eq. (10). Its complex roots 
change the wavelet phase–frequency characteristics, and 
its real roots only change the symmetry of the wavelet filter 
coefficients. 

(10)     0
1 1

1
( ) ( )

2

p L M
*

i i i
i i

z
h z h z λ z z z z

 

      
 

   

where h0 is a real number, p = 0, 1, 2, ..., iλ  is a real 

number not equal to 1 , iz
and 

*
iz  are complex 

conjugates, and h is the number of items for P + L +2M +1. 

Thus, the available 
*
iz z 1

 instead of iz z
 or the 

available iz z 1
 instead of 

*
iz z  realizes the structure of a 

complex wavelet. According to Ref. [13], using the db series 
in the wavelet processing of PD signals is better, and the 
processing capacity of the db series of the db4 wavelet is 
the best. 
(B). Selection Threshold 

According to Ref. [14], using soft or hard thresholding 
method in complex wavelet transform can remove most of 
the noise, but when the energy distribution characteristics of 
signal itself is considered, each sub-band denoising 
becomes imbalance, which is not conducive to signal 
reconstruction. Therefore, this paper adopts the hierarchical 
role of the threshold to avoid this problem. 
(C). Denoising Steps 

Setting signal f (n) as s (n) after noise pollution, s (n) = f 
(n) + q (n) + δ (n), where q (n) is the periodic narrowband 
interference signals and δ(n) is the Gaussian white noise. 

The signal after denoising is 
'f . Figure 1 shows the 

integrated morphological filters and the complex wavelet 
transform denoising algorithm flowchart. The specific 
denoising process is as follows: 

(1) A set of strobe signals is obtained by morphological 
filtering of the noisy time-domain signal s (n). 

(2) By performing complex wavelet transform of the 
filtered signal from Step (1), a set of complex wavelet 
coefficients is obtained. 

(3) Based on the features of each complex wavelet 
coefficient layer, the threshold is considered as the real and 
imaginary parts of the each layer of the complex wavelet 
coefficients (layered after threshold). 

(4) The complex wavelet coefficients, whose layered 
complex threshold approach have been performed, are 
inversely transformed; thus, complex signal WTR + iWTI is 
obtained. 
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5) By processing the composite information of WTR and 
WTI, denoising result  f’ is finally obtained. 

 

 
Fig. 1 Denoising algorithm flowchart 
(D). Denoising Effect Parameter Evaluation 

To evaluate the effect of the combined morphological 
filter and complex wavelet transform denoising method, 
three evaluation parameters are introduced: signal-to-noise 
ratio (SNR) [15], normalized correlation coefficient (NCC ) 
[16], and variation trend parameter (VTP) [17], defined by 
Eqs. (11)–(13), respectively. 

(11)       1,2,

1,2,

max ( )
20 lg

max ( )
i N

i N

s i
SNR dB

n i
 

 

  ，

，

 

where s (i) is the PD signal and n (i) is the noise signal. 
When SNR is positive, the signal is stronger than the noise; 
otherwise, the signal is weaker than the noise. Higher SNR 
indicates that the denoising algorithm has stronger ability to 
extract the signals effectively. 

(12)    

 

2

1

1

1
2

0

(

((

)

( )) )
N

n

N

n

N

n

s n f n
NCC

ns fn





 




   
 




 

where s is the original signal and f is the denoised signal. 
The value of NCC is between -1 and 1, where -1 represents 
before and after the transformed waveform reversal, 0 
represents two biorthogonal waveform, and 1 indicates 
exactly the same waveform. A waveform with a large NCC 
does not always have a high amplitude because NCC only 
describes the degree of similarity between two waveforms, 
irrespective of the waveform amplitude and energy 
attenuation. 

VTP consists of rise VTP (RVTP) and fall VTP (FVTP), 
equal to the mean of the rising and falling parameter trends. 

(13)    
RVTP FVTP

VTP
2


   

(14)    2

2

[ ( ) ( 1)]

[ ( ) ( 1)]

N

i
N

i

f i f i
RVTP

s i s i





 


 




 

where s (i) is a waveform and f (i) is another waveform. s (i) 
is greater than s (i-1), and f (i) is greater than f (i-1). 

(15)    2

2

[ ( 1) ( )]

[ ( 1) ( )]

N

i
N

i

f i f i
FVTP

s i s i





 


 




  

where s (i) is a waveform and f (i) is another waveform. s (i) 
is less than s (i-1), and f (i) is less than f (i-1). 

VTP represents the degree of similarity trend of the two 
waveforms and, to some extent, measures the waveform 
oscillations. The closer VTP is to one, the more similar is 
the oscillation of the two waveforms. If the original 
waveform oscillates and the denoised waveform does not, 
then the denoising trend before and after the two 
waveforms is different, i.e., the VTP value is not close to 
one. To make up for the shortcoming of NCC, both VTP and 
NCC can be used to evaluate better the similarity degree of 
the waveforms before and after denoising. 

Obtaining PD signal from the original waveform is 
difficult; thus, the SNR, NCC, and VTP of denoised signal 
cannot also be obtained. Therefore, noise suppression is 
introduced to evaluate the advantage and disadvantage of 

the denoising effect using 2
1 1uP   and 

2
2 2uP  , as 

defined in Eq. (16) [5]. 

(16)  2 2
1 2 1 210(lg lg ) 10(lg lg )NRR u uP P       

where Pu1 and Pu2 are the noise power before and after 

the treatment, respectively, and 1  and 2  are the 
deviation of the interference noise before and after noise 

removal, respectively. NRR  shows the highlight level of the 

signal after suppression of the interference. Larger NRR  
indicates stronger ability to remove the PD noise. 
 

Analysis of the Analog Signal Denoisng of PD 
(A). Source Simulation of the PD Signal 

Most of the detected PD signals in engineering practice 
are decaying oscillation signals. Equations (17)–(20), 
namely, single-exponential decay pulse, double-exponential 
decay pulse, single-exponential decay of the oscillation 
pulse, and double-exponential decay of the oscillation 
pulse, are usually used for the theoretical study of PD 
signals. 

Model 1: Single-exponential decay pulse 

(17)     
/

1
ts Ae    

Model 2: Double-exponential decay pulse 

(18)     1 2/ /
2 ( )t ts A e e      

Model 3: Single-exponential decay of the oscillation 
pulse 

(19)     /
3 sin(2 )t

cs Ae f t   

Model 4: Double-exponential decay of the oscillation 
pulse 

(20)     1 2/ /
4 ( )sin(2 )t t

cs A e e f t       

where A is the amplitude of the pulse signal,  is the decay 
constant, and fc  is the oscillation frequency.  

These four function models can be used to simulate the 
PD source, as shown in Fig. 2. White noise is described 
using mean value u=0 and the variance ( 2  ) of a wide 

stationary Gaussian random process n(k). The periodic 
narrowband interference waveform is a sine wave, 
simulated by superimposing multiple sine waves. We 
assume that the narrowband interference signal is 
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superimposed by equal-amplitude sine waves of 80 kHz, 
120 kHz, 265 kHz, 327 kHz, 450 kHz, 560 kHz, 620 kHz, 
750 kHz, 1 MHz, and 2 MHz. The number of sampling 
points is 10,000, the sampling interval is 0.05 μs, and the 
equivalent sampling frequency is 20 MHz. Figure 2(b)–(e) 
shows the stained noise signal superimposed above the 
white noise and periodic narrowband interference. Figure 
2(b) and (c) shows that the amplitude of the noise signal is 
larger than that of the PD signal. Figure 2(d) and (e) shows 
that the amplitude of the noise signal is smaller than that of 
the PD signal. The SNRs are 0 and -6.02 dB, respectively. 

 
(a) Original waveform 

 
(b) Dying noise waveform (SNR=0 dB) 

 
(c) Dying noise waveform (SNR=-6.02 dB) 

 
(d) Dying noise waveform (SNR=0 dB) 

 
(e) Dying noise waveform (SNR=-6.02 dB)  
Fig. 2 PD signal simulation 
 

(B). Analysis of Denoising Effect 
The wavelet transform of the wavelet, complex wavelet 

transform, and morphological filters were applied to the 
complex wavelet transform to analyze the denoising effect, 
as shown in Fig. 2(b) and (c). The denoising results are 
shown in Figs. 3 and 4. Figures 3–6 respectively show the 
denoising results from Fig. 2(b)–(d). Figures 3(a) and 6(a) 
respectively show the morphological–complex wavelet 
denoising results. Figures 3(b) and 6(b) respectively shows 
the complex wavelet denoising results, whereas Figs. 3(c) 
and 6(c) show the wavelet denoising results. Figures 3–6 
show that, regardless whether the amplitude of the noise is 
larger or smaller than that of the PD signal, the denoising 
results of the morphological–complex wavelet are better 
than the other two denoising methods, indicating that this 
method has a strong denoising ability. It can retain much of 
the original signal energy while experiencing lesser 
distortion. The complex wavelet using the same wavelet 
basis can be very effective in removing noise, but the 
energy loss and distortion cannot be ignored. The energy 
distortion in the wavelet denoising is relatively small, but 
when the amplitude of the noise is large, distinguishing the 
PD signal from the denoising results becomes difficult. 

 

 
(a) Results of morphological–complex wavelet denoising 

 
(b) Results of the complex wavelet denoising 

 
(c) Results of wavelet denoising 
Fig. 3 PD signal (δ=0 dB) denoising results 

 
(a) Results of morphological–complex wavelet denoising 

 
(b) Results of complex wavelet denoising 

 
(c) Results of wavelet denoising 
Fig. 4 PD signal (δ=-6.02 dB) denoising results 

 
(a) Results of morphological–complex wavelet denoising 

 
(b) Results of complex wavelet denoising 

 
(c) Results of wavelet denoising 
 Fig. 5 PD signal (δ=0 dB) denoising results 

 
(a) Results of morphological–complex wavelet denoising 

 
(b) Results of complex wavelet denoising 

 
(c) Results of wavelet denoising 
Fig. 6 PD signal (δ=-6.02 dB) denoising results 
 

The evaluation results are shown in Table 1, where the 
amplitude of the noise is larger than that of the PD signal. 
Table 2 shows the evaluation results, where the amplitude 
of the noise is smaller than that of the PD signal. Tables 1 
and 2 show that the SNR from the integration of 
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morphological filter and complex wavelet denoising results 
is the highest among the denoising methods, and its NCC is 
also higher than the other two methods. Therefore, 
compared with the complex wavelet and wavelet denoising, 
the morphological filter–complex wavelet denoising has 
better ability to extract PD signals, and the similarity of the 
waveforms is higher. Table 1 shows that the VTPs of the 
wavelet and complex wavelet denoising results are similar, 
but the VTP of the morphological filter–complex wavelet 
denoising results is larger than those obtained by the other 
two methods. In Table 2, the VTP of the morphological 
filter–complex wavelet and the wavelet denoising results 
shows little difference, whereas both VTPs of the 
morphological filter–complex wavelet and wavelet are larger 
than the complex wavelet. This result shows that, based on 
the degree of similarity in wave oscillations, the denoising 
results of the morphological filter–complex wavelet are 
better than the other two methods. 

 

Table 1 Evaluation parameters of the denoising results 
Signal 

intensity 
Denoising 

method 
SNR NCC VTP 

0 dB 
a 37.3462 0.9102 0.8519 
b 30.4357 0.7536 0.8217 
c 15.4735 0.8437 0.8013 

-6.02 
dB 

a 29.5410 0.8932 0.8435 

b 20.3487 0.7436 0.8124 

c 6.3424 0.7864 0.8156 

Table 2 Evaluation parameters of the denoising results 
Signal 
intensity 

Denoising 
method 

SNR NCC VTP 

  0 dB 
a 62.0317 0.9435 0.8714 
b 53.2365 0.8926 0.8462 
c 41.5834 0.9135 0.8251 

 -6.02 dB 

a 51.7326 0.9203 0.8512 

b 32.4973 0.8261 0.8219 

c 35.6285 0.9072 0.8308 
 

Therefore, applying morphological filter–complex 
wavelet to remove the noise in PD signals is feasible and 
effective. Regardless whether the amplitude of the noise 
signal is greater than (or less than) the amplitude of the PD 
signal, the denoising results of the morphological filters–
complex wavelet are better than the other two methods. 

 

Analysis of the Denoising Results of Measured PD 
Signal  
(A). Denoising Results of the Measured Signal in 
Laboratory  

We use only the internal (air gap) discharge model for 
PD signal noise analysis in the laboratory. The stained 
noise signal, which is not mixed with any noise during the 
experiment, is shown in Fig. 7. PD signal waveforms can be 
seen from the collected signal. Figure 9 shows the collected 
signal when it is mixed with 98 MHz FM and 425 MHz 
walkie-talkie interference signals. Obviously, the PD signal 
is disturbed by the noise signal. The denoised PD signal 
waveforms are shown in Figs. 8 and 10. 

Figures 8 and 10 show that the distortion of the 
morphological filters–complex wavelet is relatively small; 
thus, the original signal is well protected. The denoising 
results of the complex wavelet have relatively larger 
distortions. For the wavelet denoising, when the amplitude 
of the PD signal is higher than the amplitude of the noise, 
this method can be used to extract PD signals. However, 
when the amplitude of the PD signal becomes lower than 
the noise, distinguishing the useful signal from the stained 
noise is significantly difficult. Therefore, using the 

morphological filters–complex wavelet is effective in 
removing noise. 

 
Fig. 7 Measured PD signals in the laboratory 

 
(a) Results of morphological–complex wavelet denoising 

 
(b) Results of complex wavelet denoising 

 
(c) Results of wavelet denoising 
Fig. 8 Measured PD signals after denoising 

 
 Fig. 9 Measured PD signals in the laboratory 

 
(a) Results of morphological filter–complex wavelet denoising 

 
(b) Results of complex wavelet denoising 

 
(c) Results of wavelet denoising 
Fig. 10 Measured PD signals after denoising 
 
(B). Denoising Results of the Measured Signal in the Field 

To investigate the rejection capability of the 
morphological filter–complex wavelet method, denoising 
analysis was conducted on the PD signals obtained from a 
switchgear operated in the field.  

The measured PD signal, mixed with noise, is shown in 
Fig. 11. The denoised PD signal is shown in Fig. 12, which 
shows that the sensitivity of the denoising result in Fig. 
12(a) is high and desirable. The denoising results shown in 
Fig. 12(b) indicates that the loss of signal energy is large 
and also displays serious signal distortion. The denoising 
results shown in Fig. 12(c) cannot distinguish the weak PD 
signal. 

From Eq. (16), the noise suppression ratio ( NRR ) of the 
morphological filter–complex wavelet, which is 105.37 dB, 
can be obtained. The NRR of the complex wavelet denoising 
is 74.26 dB, and the NRR  of the wavelet denoising is 50.68 
dB. Therefore, using the morphological filters–complex 
wavelet is effective in suppressing periodic narrowband 
interference and white noise in the PD signal. 
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Fig. 11 Measured PD signals under field interference 

 
(a) Results of the morphological–complex wavelet denoising 

 
(b) Results of the complex wavelet denoising 

 
(c) Results of the wavelet denoising 
Fig. 12 Measured PD signals after denoising 
 
Conclusion 

(1) This paper has presented a denoising strategy of the 
interference signal from PD based on mathematical 
morphology and complex wavelet transform. The 
morphological filter, which has a flat structural element, and 
the complex wavelet transform are used in this method to 
remove the noisy signal in PD to obtain finally the real PD 
signal. 

(2) The denoising results of the measured and the 
simulated PD signals indicate that the inhibiting ability of 
this method for periodic narrowband and white noise 
interferences is better than the wavelet-denoised and the 
complex wavelet-denoised signals, and the energy loss is 
smaller, favorable to the restoration of real PD signals. 
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