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Abstract. For achieving a more precise frequency estimation of a short sinusoid at low SNR, a algorithm based on fusion spectra of Multi-section 
Sinusoids(M-sinusoids) was proposed. In order to solve the discontinuous phases problem of M-sinusoids, the Optimization Weighted-Accumulation 
(OW-A) spectrum was gained through weighted-accumulation spectra of M-sinusoids by the designed weighted factor. The correlation spectrum, 
which could inherit the narrow and high main-lobe of the OW-A spectrum, and the good noise immunity of the accumulation spectrum of M-sinusoids, 
was constructed by correlation OW-A spectrum and the accumulation spectrum. Therefore, higher precision frequency estimation could be obtained 
through spectral peak searching of the correlation spectrum. Moreover, in order to meet the high real-time demand in some fields, a fast algorithm of 
the proposed algorithm was put forward. This fast algorithm could reduce most computational cost of the proposed algorithm by the following 
techniques: design a fast DTFT algorithm, reduction dimensions of the weighted fusion spectrum matrix, 1/3 main-lodes correlation of the OW-A 
spectrum and the accumulation spectrum. Simulations demonstrate the superior performance of the proposed algorithms; the fast algorithm could 
reduce most calculation of the proposed algorithm with lowering a little frequency estimation precision, and it works better in very low SNR 
(SNR≤-13dB) .  
 
Streszczenie. W artykule zaproponowano algorytm estymacji częstotliwości krótkich fal sinusoidalnych o niskim zaszumieniu (SNR). Rozwiązanie 
bazuje na widmie fuzji M-częstotliowości sinusoid (M-sinusoids). W celu rozwiązania problemu nieciągłości faz M-sinusoid zastosowano 
współczynniki wagowe zawartości częstotliwości, co pozwoliło na ich optymalizację (ang. Optimization Weighted-Accumulation). Zastosowanie 
algorytmu pozwala na zwiększenie precyzji estymacji przy jednoczesnym zwiększeniu szybkości wykonania. Wyniki badań symulacyjnych 
potwierdzają skuteczność działania. (Estymacja częstotliwości z wykorzystaniem widma fuzji M-częstotliwości sinusoid). 
 
Key Words: Frequency estimation, Spectra fusion, Multi-section Sinusoids (M-sinusoids), Signal processing 
Słowa kluczowe: estymacja częstotliwości, widmo fuzji, multi-częstotliwość sinusoid, przetwarzanie sygnału. 
 
 
1.  Introduction 

Precise frequency estimation for the short sinusoid signal 
at low Signal-to-Noise Ratio(SNR) has a significant 
theoretical and practical value in many fields, such as radar, 
sonar communication, speech recognition, fault diagnosis 
and image processing[1]-[3]. Due to its short duration, the 
spectrum of a short sinusoid signal has a severe spectrum 
leakage, insufficient information and a poor anti-noise 
property [4], which effect the frequency estimation precise 
heavily. In order to solve those problems above perfectly, a 
frequency estimation algorithm based on fusion spectra of 
Multi-section Sinusoids (M-sinusoids) was proposed. This 
algorithm can accumulate information of M-sinusoids by 
fusion spectra of M-sinusoids. In opinion of information 
theory, information of M-sinusoids is several times than that 
of a single section sinusoid, therefore fusion spectra of 
M-sinusoids is an effective way to make up the insufficient 
information and severe spectrum leakage of a short section 
signal, which can improve frequency estimation precision 
largely from the signal source without heavy hardware 
cost[5]-[6]. Moreover, in order to meet the high real-time 
demand in some fields such as radar, sonar and electronic 
countermeasures, a fast algorithm of the proposed algorithm 
was also put forward. This fast algorithm could reduce most 
calculation of the proposed algorithm by the following 
techniques: design a fast DTFT algorithm, reduction 
dimensions of the weighted fusion spectrum matrix, 
correlation between the 1/3 main-lodes of the OW-A 

spectrum and the accumulation spectrum.  
This paper is organized as follows: section 2 describes 

the principle of the frequency estimation algorithm based on 
fusion spectra of M-sinusoids. A fast algorithm of the 
proposed algorithm is given in Section 3. Section 4 analyze 
the computation of the proposed algorithms. Section 5 gives 
the performance simulation of the proposed algorithms, 
including the frequency estimation algorithm and its fast 
algorithm. Section 6 gives the conclusions and the vision of 
future work. 

 
2.  Frequency estimation algorithm based on fusion 
spectra of M-sinusoids 

The principle of the frequency estimation algorithm 
based on fusion spectra of M-sinusoids is shown in figure 1. 
Firstly, spectra of M-sinusoids are generated. In order to 
solve problems caused by the discontinuous phases and the 
serious spectrum leakage, the Optimization 
Weighted-Accumulation (OW-A) spectrum is gained through 
weighted-accumulation spectra of M-sinusoids by the 
designed weighted-factor. To restrain noise interference and 
the false spectral peaks, the correlation spectrum is 
constructed by correlation the OW-A spectrum and the 
accumulation spectrum of M-sinusoids. Finally, exact 
frequency estimation can be obtained through spectral peak 
searching of the correlation spectrum. The following part 
focuses on the generation of M-sinusoids’ spectra, the 
OW-A spectrum and the correlation spectrum. 

 
 
Fig.1. The principle of the frequency estimation algorithm based on fusion spectra of M-sinusoids
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2.1. Spectra of M-sinusoids  
x  Represents M ( 2)M  sections M-sinusoids, mx  

( [1, ])m M represents the m th section signal in x ,(1)    

( ) cos[ ( ) 2 / ], [1, ]m m m s m mx n m n f f n N                            

Where: f -the estimated frequency of x , sf - the sampling 

frequency, mn - the sampling index, mN - the sampling point 

( )m -the initial phase of the m th section signal of x  

respectively. The sampling point of x is
1

M

m
m

N N


  . 

Any ( )m and ( 1)m   are often discontinuous, that is 

( 1) ( ) 2 /m sm m N f f     .  

Assuming scopef  is the approximate value range of 

f . Make scopef  linear divided, create a sequence Pf with 

the length of  ( 2)P P   and a sequence Qf  with the 

length of ( 2)Q Q  . Where ( )Pf p  denotes the P th 

element of Pf , [1, ]p P ; ( )Qf q denotes the q th 

element of Qf , [1, ]Qq ; ( )P qf p  demotes the element 

which the most approximately equals to ( )Qf q  in Pf , that 

is ( ) ( )P q Qf p f q ， [1, ]qp P . As the spectrum of any real 

signal is conjugate symmetric, it is impossible to loss 
information and bring false information excluding the 
negative frequency part[3]. Therefore, the spectrum in the 
part of positive frequency is only considered in this paper.  

Calculate Discrete Time Fourier Transform(DTFT) of 

mx  at ( )Pf p , and record its positive part as [ ( )]m PX f p , 

record the one-dimensional vector composed of 
all [ ( )]m PX f p as ( )m PX f . 

(2) 2 ( ) /]

1

[ ( ) 2 /[ ( )] 0.5
m

m sm s P
m P

m

N
j n f p f

n

j m n f fX f p e e   



    

             [ ( ) ( )( 1)]sin[ ( )]

2sin ( )
mj m g p NmN g p

e
g p

                                              

(3)         ( ) { [ (1)],..., [ ( )]}m P m P m PX f X f X f P       

where: ( ) [ ( )] /P sg p f f p f   . 

( , )z m p  denotes the phase character of [ ( )]m PX f p  

in noises, calculated by equation (4) ,                        
(4)        ( , ) { [ ( )] [ ( )]}z m P m Pm p angle X f p W f p                                   

where: ( )angle t -a function of calculation the phase of plural 

t , [ ( )]m PW f p -the influence of noises on [ ( )]m PX f p , 

0( )Pf p -an estimated value of f . Therefore, 0( , )z m p  

can approximately equal to ( )m when SNR is not very low, 

and ( )m can be replaced by 0( , )z m p in equation (3) in 

noises.  
s  denotes a phase continuous sinusoidal signal with 

the same sampling point as x,                             
(5)         ( ) cos[ (1) 2 / ], [1, ]s s s ss n fn f n N                                  

Divide s  into M sections signals, whose sampling 

point is mN ( [1, ])m M  in turn. Calculate DTFT of s  at 

( )Pf p , record its positive part as [ ( )]PS f p , record the 

one-dimensional vector composed of all [ ( )]PS f p  as 

( )PS f , and regard ( )PS f  as the spectrum of s .  

(6)
'

' 1
[ (1) 2 ( )( )]

1 1
[ ( )] 0.5

m

m m m m
m

m

NM j g p N N n

P
m n

S f p e 
   

 


    

'
' 1

[ (1) ( )(2 1)]

1

sin[ ( )]

2sin ( )

m

m m
m

M j g p N N
m

m

N g p
e

g p


   




       

(7)             ( ) { [ (1)],..., [ ( )]}P P PS f S f S f P         

2.2. OW-A Spectrum 
Due to the short duration of mx , the main-lobe of 

( )m PX f is wide and its anti-noise is poor. In order to solve 

these problems, a weighted-factor jDe  is designed to 

fuse M  sections ( )m PX f to the OW-A Spectrum, which 

is approximately as same as the spectrum of a 
phase-continuous sinusoid with the same length of 

x . ( , , )jD m p qe denotes the ( , , )m p q th element in jDe . 

(8)   
'

' 1
[ ( , ) (1, ) 2 ( )( )]

( , , )

m

z q z q q m m
m

j m p p g p N N
jD m p qe e 

     
  

Where: [ ( ) ( )] /( ) Q P sq f q f p fg p   . 

'( )PX f , which is gained by weighted accumulation of 

( )m PX f with jDe , represents the weighted-accumulation 

spectrum matrix of x . '( )q PX f  denotes the elements in 

the q th column of '( )PX f , '[ ( )]q PX f p  denotes the 

( , )p q th element in '( )PX f . Searching 

{ [ '( )]}PMAX abs X f , the column in which the peak element 

located is 0q , and all elements in the 0q th column of 

'( )PX f  compose 
0

'( )q PX f . As shown in figure 2, 

0
'( )q PX f  is similar to the spectrum ( )PS f  of the 

phase-continuous signal s . The main-lobe of 
0

'( )q PX f  is 

narrow and high, the energy of 
0

'( )q PX f is relatively 

concentrated, the spectrum leakage is weakened obviously, 
so 

0
'( )q PX f  is regarded as the OW-A spectrum. 

(9)        ( , , )

1
'[ ( )] { [ ( )]}

M
jD m p q

q P m P
m

X f p e X f p


    

(10)       '( ) { '[ (1)],..., '[ ( )]}q P q P q PX f X f X f P  

(11)       1'( ) [ '( ),..., '( )]P P Q PX f X f X f   

1

1

'[ (1)],..., '[ (1)]
...,...,...,...,

'[ ( )],..., '[ ( )]

P Q P

P Q P

X f X f

X f P X f P

    
  

 

 

 
Fig. 2. Amplitude Spectrum of ( )PS f and 

0
( )' Pq fX  
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Fig.3. The basic idea of the proposed fast DTFT algorithm. 
 

2.3. Correlation Spectrum  
Frequency-domain correlation performs as the 

accumulation of the product of co-frequency components[5]. 
Take advantage of the frequency of a sinusoid locates 
around the spectrum peak, spectrum correlation technology 
in this paper is mainly used to analyze the correlation of 
two different types spectrum of the same signal, that is the 
OW-A spectrum and the accumulation spectrum. It can 
reduce noises and improve signal parameters estimation 
precision. 

( )PX f  calculated as equation(12), represents the 

accumulation spectrum of ( )m PX f ,          

(12)             
1

( ) [ ( )]
M

P m P
m

X f abs X f


     

As the accumulation spectrum ( )PX f can increase the 

main lobe’s height and reduce noises to some extent[6], the 
main-lobe of 

0
'( )q PX f  is narrow and high, the energy of 

0
'( )q PX f is relatively concentrated, the spectrum leakage 

is weakened obviously. Make correlation analysis for 

0
'( )q PX f and ( )PX f ， which can combine good 

characters of the narrow high main-lobe of 
0

'( )q PX f and 

the good anti-noise of ( )PX f . 

Calculate the correlation spectrum ( )Pr f  of 
0

'( )q PX f  

and ( )PX f  as equation (13) and (14), 

(13)   [ ( )] { [ ( )] [ ( )]}P P Pr f p X f p W f p    

0 0
{ '[ ( )] [ ( )]}q P q PX f p W f p       

0 0
[ ( )] [ ( )] '[ ( )] [ ( )]P q p q P PX f p W f p X f p W f p 

0 0
[ ( )] [ ( )] [ ( )] '[ ( )]q P P P q PW f p W f p X f p X f p   

(14)           ( ) { [ (1)],..., [ ( )]}P P Pr f r f r f P          

where: ( )PW f -the noises on ( )PX f ,
0
( )q PW f -the noises 

on 
0

'( )q PX f . As the randomness of noises, it is generally 

thought that there are little correlation between ( )PX f  

and
0
( )q PW f , between 

0
'( )q PX f  and ( )PW f . Due to the 

weighted factor, the correlation of 
0
( )q PW f  and ( )PW f  

is weak compared to that of ( )PX f  and 
0

'( )q PX f . 

Therefore, equation (14) mainly considers the correlation of 
( )PX f  and 

0
'( )q PX f  without noises. Moreover, it is 

easy to reduce noises through calculation the correlation 
spectrum ( )Pr f , as ( )PX f  and 

0
'( )q PX f  are 

generated from the same signal x , ( )PX f  and 

0
'( )q PX f can get the peak at the same frequency point ，

which is closest to the true frequency f without noises 

interference. At that time, the correlation of ( )PX f  and 

0
'( )q PX f  is strongest, so spectrum peak of ( )Pr f can get 

the optimal estimation of f .  

3.  Fast algorithm of the proposed algorithm 
The calculation of the proposed algorithm based on 

fusion spectra of M-sinusoids (called it the pre-proposed 
algorithm for short) mainly focuses on the following three 
parts: calculation ( )m PX f  through DTFT, generation the 

OW-A Spectrum 
0

'( )q PX f  and calculation the correlation 

spectrum ( )Pr f . In order to meet the high real-time 

demand in some fields such as radar, sonar and electronic 
countermeasures, a fast algorithm for the proposed 
algorithm was proposed. The fast algorithm can reduce 
most calculation with lower little precision by some 
techniques as follow: design a fast DTFT algorithm, 
reduction dimensions of the weighted fusion spectrum 
matrix, analyse the 1/3 main-lodes correlation of the OW-A 
spectrum and the accumulation spectrum.  

 

3.1. The fast DTFT algorithm 
3.1.1. Principle of the fast DTFT algorithm 

According to the above analyse, the calculation cost of 
( )m PX f  through DTFT in the pre-proposed algorithm is 

heavy. Though paper[7] has proposed a fast DTFT algorithm, 
it can not deal with the sequence with the fix length in the 
pre-proposed algorithm. 

The general definition of DTFT of a sequence ( )x n is 

defined as equation (15)[3], 

(15)  
1

0
( ) ( )s s

N
j T j T n

n
X e x n e

  


   

Take min max[ , ]scopef f f ， the frequency resolution 

f and sf  into equation(15). An K -point DTFT is given 

by equation (16), where : max min( ) / 1K f f f    . 

(16)   
1

0
( ) ( )s s

N
j T j T n

n
X e x n e

  


    

min
1

(2 / 2 / )

0
( ) s s

N
jn f f fk f

n
x n e

    


  , 0,1,..., 1k K   

Design a fast DTFT algorithm according to equation(17) 
proposed by Bluestein[8] 

(17)         2 2 21
[ ( ) ]

2
ab a b a b                

      Equation(16) can be rewrite as equation(18)： 

(18)       
2 1

/

0
( ) ( ) ( )s s

N
j T j k f f

n
X e e g n h k n

   


     

where:    

(19) min2 ( 0.5 )/( ) ( ) , 0,1... 1sj n f n f fg n x n e n N        

(20)                   
2 /( ) sj n f fh n e        

According to equation(18)-(20), K -point DTFT of 

( )x n can be gotten by 
2 / sj k f fe   multiplying the linear 

convolution of g(n) and h(n) in fact. In order to compute the 
linear convolution of g(n) and h(n), it only needs to choose 
the value of h(n) in the range 1 1N n K     . So ( )h n  

can be seen as a sequence with the length 1L K N   . 

IFFT FFT
Padding-zeroGeneral 

DTFT 
Equation(18) Linear 

Convolution 
Cyclic 

Convolution
The result of 

cyclic 
convolution

OutputMulplying
2 / sj k f fe    
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Calculation linear convolution in time-domain is inefficient, 
and results of cyclic convolution and linear convolution are 
the same when the length of cyclic convolution is greater 
than or equal to 1L N  . Therefore, linear convolution of 

( )g n  and ( )h n can be convert into cyclic convolution with 

the cycle length L . 
The proposed fast DTFT algorithm is described as 

figure 3, implementation steps are as follow: 
Step 1: choose L . L is the smallest integer greater than 

or equal to 1K N  , and the integer power of two.  

Step 2: convert ( )h n  into a new sequence ( )Lh n  

according to equation(21). 

(21)       
( ), 0 1

( ) 0 ,
( ), 1 1

L

h n n K
h n K n L N

h L n L N n L

     
     

 

Step 3: compute ( )g n  according to equation (19). 

 Step 4: convert ( )g n into a new sequence 1( )g n by 

Step 4: convert ( )g n into a new sequence 1( )g n by 

padding-zero. Calculation L -point DFT of 1( )g n  by the 

FFT and record its result ( )G l . 

Step 5: compute L -point DFT of ( )Lh n  by the FFT 

and record its result as ( )H l . 

Step 6: multiply ( )G l and ( )H l point by point and record 

the result as ( )Y l , which is the cyclic convolution of 

( )g n and ( )h n . Calculation L -point Inverse Fast Fourier 

Transform (IFFT) of ( )Y l , and record its result as '( )y n . 

Record the value of '( )y n  in the range of 

0 1n K   as ''( )y n , which is the result of the linear 

convolution of ( )g n  and ( )h n . 

Step 7: multiply ''( )y n by 
2 / sj k f fe   to give K -point 

DTFT of ( )x n . 
 

3.1.2. Computation analysis of the fast DTFT algorithm 
 (1) Calculation ( )g n :needs N complex 

multiplications； 
(2) Three times to calculate L -point FFT(step4,step5 

and step6): needs 21.5 logL L complex multiplications and 

23 logL L complex addition; 

(3) Calculation the cyclic convolution of 
( )g n and ( )h n : needs L complex multiplications; 

(4) Calculation the multiplication of 

''( )y n and
2 / sj k f fe   : needs K complex multiplications; 

According to the above analysis, calculation K -point 
DTFT by the proposed fast algorithm needs about 'DTFTS   

complex multiplications and 'DTFTS  complex additions. 

Calculation K -point DTFT by the general DTFT algorithm 
needs about DTFTS KN  complex multiplications and 

( 1)DTFTS N K   complex additions.   

（22）      2' 1.5 logDTFTS L L N L K           

（23）             2' 3 logDFTFS L L             

3.2.    Reduction  dimensions  of weighted  fusion 
Spectrum matrix 

X’(fP), the weighted-accumulation spectrum matrix 
of x ,is gotten through fusion all ( )m PX f  by the 

weighted-factor jDe . ( )m PX f is a 1P  order matrix, 

jDe is a M P Q   order matrix，so '( )PX f  is a P Q  

matrix , which can be described as figure 4. Figure 4 is a grid 
which is composed of P  transverse lines and Q  vertical 

lines. The intersection of the p th transverse line and the 

q th vertical line represents ' [ ( )]q PX f p , which is the 

( , )p q the element in '( )PX f .
0

'( )q PX f  Can be 

represented by all elements on the 0q th vertical line. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. The principle diagram of the dimension reduction for 
weighted-fusion spectrum matrix 
 

（1） P Q  . 
0

'( )q PX f  May locate on any column of 

'( )PX f .So 
0

'( )q PX f  is confirmed only to spectrum peak 

search [ '( )]q Pabs X f  without noises. In that case, it is 

necessary to calculate all elements of '( )PX f , which 

computational cost is heavy.  
（2） P Q . �In the case of 1( )Pf f p 1( [1, ])p P , 

the peak of [ '( )]q Pabs X f  must locate at the 

1 1( , )p q th of '( )PX f ,where 1 1p q . That is the peak of 

[ '( )]q Pabs X f  located at the diagonal of '( )PX f . In the 

case of 1( )Pf f p , the peak of [ '( )]q Pabs X f  must 

locate at the 1 1( , )p q th of '( )PX f ,where 1 1p q . The 

peak of [ '( )]q Pabs X f  located at the diagonal of 

'( )PX f ,too. Therefore, the peak of [ '( )]q Pabs X f  must 

locate at the diagonal of '( )PX f  when P Q . In order to 

confirm 
0

'( )q PX f , it is only necessary to calculate the 

elements at the diagonal of '( )PX f .Let '( )pq PX f , which 

is a 1P  order matrix , represent all elements at the 
diagonal of '( )PX f .

0
'( )q PX f  can be confirmed through 

spectrum peak searching [ '( )]pq Pabs X f . So it converts 

calculation a P Q  order matrix '( )PX f into calculation a 

1P  order matrix '( )pq PX f ， which can reduce the 

computational complexity. 
（24）       1'( ) { '[ (1)],..., '[ ( )]}pq P P Q PX f X f X f Q    

Moreover, reduction dimensions of the weighted fusion 
spectrum matrix are good for improving the anti-noise 
property. According to the analyse, 

0
'( )q PX f  should 

locate at the diagonal of '( )PX f when P Q . However, 

0
'( )q PX f  may be not found on the diagonal of '( )PX f  
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through spectrum peak searching [ '( )]q Pabs X f when 

P Q  in noises. While reduction dimensions of the 

weighted fusion spectrum matrix can confirm 
0

'( )q PX f  

located at the diagonal of '( )PX f ,which can improving the 

anti-noise property of the fast algorithm. 
 

3.3. Correlation of the 1/3 main-lodes  
Correlation analysis for 

0
'( )q PX f and ( )PX f  can 

combine good characters of the narrow and high main-lobe 
of 

0
'( )q PX f , and the good anti-noise of ( )PX f ,which 

can improve the spectrum analysis precision enormously. 
However, the 1/3 main-lode of 

0
'( )q PX f  has the biggest 

correlation with the same part of ( )PX f , so it is not 

necessary to analyse the correlation of 
0

'( )q PX f  and 

0
'( )q PX f  in the whole scopef , only in the 1/3 main-lode 

part, which is shown in gray part of figure 5. In that case, 
analyse the correlation of the 1/3 main-lodes can also 
decrease the calculation.  

 

 
Fig. 5. The schematic diagram of correlation of the 1/3 main-lode 
 

Compute the correlation the 1/3 main-lodes spectrum 

1/3( )Pr f  of 
0

'( )q PX f  and ( )PX f  as equations (25,26)  

(25)  1/3[ ( )] { [ ( )] [ ( )]}P P Pr f pp X f pp Z f pp   

00
{ '[ ( )] [ ( )]}q P q PX f pp Z f pp    

[ ( )] '[ ( )]P q PX f pp X f pp        

(26)     1/3 1/3 1/3( ) { [ ( )],..., [ ( )]}P P Pr f r f pp r f pp  

where:
1 1 2 2
, 1,..., 1,l l l lpp p p p p  

1 2 2 1
( )l l l lP abs p p P   .

1
[1, ]lp P ，

2
[1, ]lp P ，

2 1l lp p ,
1

( )P lf p - the 
1l

p th  element in Pf ,
2

( )P lf p -the  

2l
p th element in Pf , which are the discrete frequency 

points of the left and right respectively of the 1/3 main-lode 
of 

0
'( )q PX f . 

 

4.  Computation analysis of the proposed algorithms 
The computation of the pre-proposed algorithm, the fast 

algorithm (called them the proposed algorithms for short) is 
shown in table 1 and table 2 respectively. As the complex 
operation is the main operation of the proposed algorithms 
in the paper ， the complex multiplication and complex 
addition are choose as the compared criterion. 

Convert the complex operation into the real operation 
according to the follow relationships: one complex 
multiplication equates to four real multiplications and two 
real additions, one complex addition equates to two real 
additions. Set M =4, P =150, Q = 150, Nm = 50, N = 200, Lm 
= 256 ，（ [1, ]m M ），

1 2
/ 5l lP P , and take 

TMS320VC5502[9] as the processor with the main 
frequency 100MHz（which the max main frequency is 300 
MHz）. According to the following criterion: calculating one 
real multiplication needs two instruction cycles, one real 
addition needs one instruction cycle, the time consuming of 
the proposed algorithms are shown in table 3.Moreover,the 
time consuming of the proposed fast algorithm can decrease 
more with the increasing of the main frequency of 
TMS320VC5502. 

 

 

Table 1. Computation of the pre-proposed algorithm 

 
The pre-proposed algorithm 

Times of complex multiplication Times of complex addition 

Compute M ( )m PX f  N P  ( )N M P   

Compute '( )PX f  P Q M   ( 1)M P Q    

Compute ( )PX f  0 1M   

Compute ( )Pr f  P  0 

Sum ( 1)P QM N   ( 1)( 1) ( )M PQ P N M     

 Table 2. Computation of the fast algorithm 

 
The fast algorithm 

Times of complex multiplication Times of complex addition 

Compute M ( )m PX f  2
1

(1.5 log )
M

m m m m
m

L L N L P


    2
1

3 log
M

m m
m

L L

  

Compute '( )pq PX f  M P  ( 1)M P   

Compute 
0

'( )q PX f  M P  ( 1)M P   

Compute [ ( )]PX f pp  0 1M   

Compute 1/3 ( )Pr f  
1 2l lP  0 

Sum 
1 22

1

(1.5 log ) 3 '
M

m m m l l
m

L L L MP N P


     2
1

3 log ( 1)(2 1)
M

m m
m

L L M P


    
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Table 3. Computation and time consuming of the proposed algorithms 
Computation The pre-proposed algorithm The fast algorithm 

Times of complex addition  96903 25479 
Time consuming of complex addition(ms)  1.9381 0.5096 

Times of complex multiplication 120150 15342 
Time consuming of complex multiplication(ms) 12.0150 1.5342 

Sum(ms) 13.9531 2.0438 

5.  Simulation validation 
To validate the proposed algorithms, compared 

experiments with the algorithm in paper[10] and FFT+FT[11] 
are implemented in Matlab7.9. The frequency estimation 
object of the proposed algorithms and FFT+FT are 1b  and 

2b , which denote M sections M-sinusoids with equal 

length and M-sinusoids with unequal length respectively. 

1 ( )mN m  and 2 ( )mN m  denote the sampling point of the  

 

m th section signal of 1b  and 2b respectively. The 

algorithm in paper[10] only fits M sections M-sinusoids 
with equal length, so its frequency estimation object is 1b . 

scopef  can be gained from the FFT. The noise added in the 

experiments is additive Gaussian white noise. Experiment 
parameters are shown in table 4.

Table 4.  Experiment Parameters 

 

Table 5. RMSE of frequency estimation in different SNR 

 
5.1. Comparison Experiments at Low SNR  

To test the performance of the pre-proposed algorithm, 
the fast algorithm, the algorithm in paper[10] and FFT+FT at 
low SNR, 1000 times Monte-Carlo experiments are carried 
out at SNR=-5dB. Other experiment parameters are shown 
in table 4.  
(1) For estimation the frequency of signal 1b , Root Mean 

Square Errors (RMSE) of the four methods mentioned 
above are [38.02，39.61，96.39，212.20]KHz respectively. 
RMSE of the fast algorithm is a little bigger than the 
pre-proposed algorithm, the error of the proposed algorithms 
is about 1/3 and 1/5 as that of the algorithm in paper[10] and 
FFT+FT respectively;  

(2) For estimation the frequency of signal 2b , RMSE of 

the pre-proposed algorithm, the fast algorithm and FFT+FT 
is [35.80，37.87，108.89]KHz respectively. RMSE of the fast 
algorithm is very near to pre-proposed algorithm, the error of 
the proposed algorithms is about 1/3 as that of FFT+FT.   
 

5.2. Comparison experiments of different SNR 
To test the performance of the four methods mentioned 

above under the condition of different SNR, 11 groups 
experiments are made. Each group includes 1000 times 
Monte-Carlo experiments. Other experiment parameters are 
shown in table 4. Experiment results given in table 5 
demonstrate that: 

(1) RMSE of the four methods mentioned above decline 
along with the raise of SNR. 

(2) The proposed algorithms have more super 
performance than other two methods for estimation the 
frequency of signal 1b and 2b . 

(3) RMSE of the fast algorithm is very near to 

pre-proposed algorithm. 
 

5.3. Comparison experiments of different length of one 
section signal 

To test the performance of the four methods mentioned 
above under the condition of different length of one section 
signal, 10 groups experiments are made. Each group 
includes 1000 times Monte-Carlo experiments. The length of 
one section signal in 1b  and 2b  is shown in table 6 .Other 

parameters are shown in table 4. Experimental results 
shown in table 7 demonstrate that: 

(1) RMSE of the four methods decline along with the 
raise of the length of one section signal in 1b  and 2b . 

(2) The proposed algorithms have more super  
performance than other two methods mentioned above for 
estimation the frequency of signal 1b  and 2b . 

(3) RMSE of the fast algorithm is very near to 
pre-proposed algorithm. 

Table 6. The length of one section signal in 1b  and 2b  

Group 
11bN ，

1 2bN ，
1 3bN ，

1 4bN
21bN ，

2 2bN ，
2 3bN ，

2 4bN

1 50，50，50，50 5，10，90，95 
2 55，55，55，55 10，15，95，100 
3 60，60，60，60 15，20，100，105 
4 65，65，65，65 20，25，105，110 
5 70，70，70，70 25，30，110，115 
6 75，75，75，75 30，35，115，120 
7 80，80，80，80 35，40，120，125 
8 85，85，85，85 40，45，125，130 
9 90，90，90，90 45，50，130，135 

10 95，95，95，95 50，55，135，140 

Parameters SNR f  sf  M  11 1[ ,..., ]MN N  21 2[ ,..., ]MN N  P  Q  

Setting -5dB 10MHz 40MHz 4 [50，50，50，50] [15，20，100，105] 150 150 

 
SNR 
(dB) 

The pre-proposed algorithm 
RMSE(KHz) 

The fast algorithm 
RMSE(KHz) 

The algorithm in [10] 
RMSE(KHz) 

FFT+FT 
RMSE(KHz) 

1
b  

2
b  

1
b  

2
b  

1
b  

2
b  

1
b  

2
b  

-15 149.61 146.75 145.48 143.30 218.45     398.98   369.55   
-13 84.18 77.86 81.30 71.74 138.74     349.24   318.92   
-11 51.39 43.46 57.25 48.21 127.87     286.16   243.15   
-9 42.57 39.21 46.42 43.80 120.08  238.63 156.67 
-7 41.27 36.56 43.02 40.57 104.59     212.20   122.79   
-5 38.02 35.80 39.61 37.87 96.73      208.16   108.89   
-3 35.66 34.08 37.25 35.28 90.74      195.25   102.95   
-1 33.16 32.32 35.34 34.29 82.16  192.82 96.02 
1 32.85 31.33 33.87 31.46 76.36      192.62   97.81    
3 30.49 29.07 32.05 30.04 77.42  192.21 96.37 
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Table 7. RMSE of frequency estimation in different length of one section signal in 1b  and 2b  

 
Group 

The pre-proposed algorithm 
RMSE(KHz) 

The fast algorithm 
RMSE(KHz) 

The algorithm in [10] 
RMSE(KHz) 

FFT+FT 
RMSE(KHz) 

1b  2b  1b  2b  1b  2b  1b  2b  

1 38.02 35.80 39.61 37.87 96.730    204.27   105.34   
2 34.17 35.33 35.37 35.04 86.189    184.39   103.12   
3 34.05 34.27 34.67 35.00 81.095    166.87   100.47   
4 32.80 33.95 33.12 34.41 73..476  152.99 93.71 
5 32.04 33.87 32.78 34.02 73.580    144.07   89.57    
6 31.34 33.41 32.67 33.93 68.534    133.71   89.22    
7 31.04 33.22 31.70 33.46 64.633    118.75   85.90    
8 29.97 32.67 31.40 33.10 61.781  117.38 84.51 
9 29.82 32.52 30.93 32.93 60.446    107.24   81.65    

10 29.67 31.48 30.24 32.74 57.661  102.13 78.68 
 
5.4. Comparison experiments of different  f 

To test the performance of the four methods mentioned 
above under the condition of different f . 10 groups 

experiments are made. Each group includes 1000 times 
Monte-Carlo experiments. Other experiment parameters are 
shown in Table 4. Experiment results given in table 8 
demonstrate that:  

(1) The proposed algorithms have more super 
performance than other two methods mentioned above for 
estimation the frequency of 1b  and 2b . 

(2) RMSE of the fast algorithm is very near to 
pre-proposed algorithm. 

 

Table 8. RMSE of frequency estimation in different f

0f  

(MHz) 

The pre-proposed algorithm 
RMSE(KHz) 

The fast algorithm 
RMSE(KHz) 

The algorithm in [10] 
RMSE(KHz) 

FFT+FT 
RMSE(KHz) 

1b  2b  1b  2b  1b  2b  1b  2b  

7.5 37.36 36.13 38.75 36.52 96.161    199.00     158.66    
8.0 37.38 36.12 38.45 36.53 95.274    202.73     105.20    
8.5 38.01 36.10 38.30 37.15 96.147    218.29     104.74    
9.0 36.76 36.13 37.36 36.50 91.623  215.43 107.64 
9.5 38.16 36.61 38.35 37.93 98.278    198.12     103.94    

10.0 38.02 35.80 39.61 37.87 97.513    198.55     100.55    
10.5 37.80 36.25 38.69 37.91 93.224    194.31      99.49    
11.0 35.50 36.38 36.88 38.31 91.399  215.71 108.96 
11.5 37.02 36.13 37.47 37.66 92.730    201.61     107.00    
12.0 38.13 36.55 38.84 37.11 98.488  201.90 100.04 

Mean(KHz) 37.41 36.22 38.27 37.35 95.084  204.56 109.62 

6. Conclusions and future work 
A frequency estimation algorithm based on spectra 

correlation of M-sinusoids was proposed. To solve the 
problems caused by the discontinuous phases and serious 
spectrum leakage of M-sinusoids, the OW-A spectrum is 
gained through weighted-accumulating spectra of 
M-sinusoids by the designed weighted factor. To reduce the 
interference of noises, inherit the narrow and high main lobe 
of the OW-A spectrum and the good anti-noise feature of the 
accumulation spectra, the correlation spectrum is 
constructed by correlation the OW-A spectrum and the 
accumulation spectrum of M-sinusoids. Consequently, 
precise frequency estimation was obtained through spectral 
peak searching of the correlation spectrum. Moreover, a fast 
algorithm of the proposed algorithm was put forward to meet 
the high real-time demand in some fields. This fast algorithm 
could reduce most calculation of the above proposed 
algorithm by the following techniques: design a fast DTFT 
algorithm, reduction dimensions of the weighted fusion 
spectrum matrix, correlation between the 1/3 main-lodes of 
the OW-A spectrum and the accumulation spectrum. 
Calculation analyses and simulations demonstrate that the 
fast algorithm could reduce most calculation of the 
pre-proposed algorithm with lowering a little precision, and it 
works better in very low SNR(SNR≤-13dB). Simulation 
results demonstrate that the proposed algorithms have more 
superior performance compared with the algorithm in 
paper[10] and FFT+FT. In the low SNR=-5dB, RMSE of the 
proposed algorithm is about 1/3 and 1/5 as the same as that 
of the algorithm in paper[10] and FFT+FT for estimation the 

frequency of 1b ; RMSE of the proposed algorithm is about 

1/3 as the same as that of FFT+FT for estimation the 
frequency of 2b .  

The future work of this paper is to make field experiments 
to validate the proposed algorithms, especially in some 
industrial environment.  
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