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 Contributions to the Horn-Schunck Optical Flow Equations 
-Part III: Alternating Iteration Algorithms 

 
 

Abstract. The Horn-Schunck equations are a coupled system of two partial differential equations which aim at finding motion information in a given 
image sequence. Recent results [1, 2] asserted that this system is well-posed and can not be decoupled under any linear transformations. In this 
paper, two alternating iterative algorithms are proposed to solve this system. These algorithms have three properties: first, at each single iteration, 
both algorithms consist of two decoupled, scalar equations of elliptic type, driven by the last approximate solutions; second, the particular form of 
iterations allows analytical solutions expressed via potential integral, Poisson integral, conformal mapping and Feynman-Kac formula; third, 
exponential convergence of these algorithms are established under mild conditions and the rates of convergence are given with the help of energy 
inequalities and Banach fixed point principle for contraction mappings. Limitations of these algorithms are discussed. 
 
Streszczenie. W artykule zaproponowano sposób analizy i rozwiązywania równań Horn’a-Schunck’a. Rozwiązanie polega na zastosowaniu dwóch 
algorytmów o przemiennej iteracji. W każdym kroku obydwa algorytmy składają się z dwóch niezależnych eliptycznych równań skalarnych, 
bazujących na ostatnim przybliżonym rozwiązaniu. Otrzymane rozwiązanie może być wyrażone poprzez całkę potencjału, całkę Poisson’a, 
odwzorowanie wiernokątne, formułę Feynman’a-Kac’a. Przedstawiono i omówiono ograniczenia stosowania proponowanych algorytmów. (Analiza 
równań Horn-Schunck’a przepływu optycznego – część III: algorytmy o iteracji przemiennej). 
 
Keywords: Optical flow, Horn-Schunck equations, alternating iteration, analytical formulae, exponential convergence, rate of convergence. 
Słowa kluczowe: przepływ optyczny, równania Horn-Schunck’a, iteracja przemienna, równanie analityczne, zbieżność wykładnicza, 
stopień konwergencji. 
 
 
1.   Introduction 

Let us recall results in the previous two parts which 
motivate our current work. In partⅠ [1], the Horn-Schunck 
system [1-4] 
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is introduced, which is the Euler-Lagrange equations of the 
variational problem. 

(2) 
2 2 2

( , )
min [ ] [ ]x y t

u v
u v dxdy I u I v I dxdy      

 
In the [1], the Horn-Schunck system has been proven to 

be well-posed: its solution exists and is unique, besides, the 
classical algorithm of Horn-Schunck corresponds to the 
gradient descent flow of the original variational problem and 
the Horn-Schunck PDEs describe the stationary state. 
Globally exponential stability of the algorithm was also 
established, which automatically implies convergence and 
uniqueness, and the stability condition and rate of 
convergence depend explicitly on smoothness of the image 
sequence and parameters of the algorithm. Two groups of 
experiments were conducted for the classical Horn-Schunck 
algorithm where assertions on both convergence and 
exponential stability were validated under nine different 
choices of algorithmic parameters, and the approximate 
sequence of solutions did approach to the ground truth. 

The Horn-Schunck equations are in coupled form, and it 
has been proven in part Ⅱ [2] that the equations can not be 
decoupled via linear transformations for generic image 
sequences.  

In the current part, two alternating iterative algorithms 
are proposed, both of which are decoupled in each step 
when the previous approximate solution is known. The 
decoupled form of these new algorithms enables explicit 
analytical solutions and facilitates quantitative performance 
analysis. Stability results are established in L2 sense. 

The organization of the rest of this paper is as following. 
Two alternating iteration algorithms are introduced in 
Section 2. Section 3 establishes analytical solutions for one 
step iteration. Globally exponential convergence and rates 

of convergence are obtained in Section 4. Conclusions and 
discussions in Section 5 conclude the paper. 

 
2.   Two Alternating Iteration Algorithms 

Note that in the Horn-Schunck system, the principal 
parts (i.e. partials of second order) have already been in 
decoupled form, while the couplings only appear on the 
right hand sides, thus the system has been nearly 
decoupled. Alternately, we can view the system in the 
following “scalar” way: given some initial v(0)

 , the first 
equation is uniformly elliptic with respect to u, and the 
coefficient before u on the right hand side, i.e. λI2

x is always 
nonnegative, so by standard results from theory of scalar 
elliptic equation [5, 6], there exists a unique solution   

u(0)=S1v
(0) with regularity higher than that of v(0) (under the 

same standing assumption as in [1], i.e. the boundary value 
of the optical flow is identically to zero); insert u(0) as a 
known function on the right hand side of the second 
equation, and reason in the same way, we obtain a unique 
solution with suitable smoothness, v(1)=S2u

(0)=S2S1v
(0) .The 

process stops only if it has reached the equilibrium, i.e. the 
solution of the original system. In this way a sequence of 
optical flows, (u(n),v(n)),n=1,2…, is generated, and satisfies 
the following recursive system which is decoupled 
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The particular forms of these equations permit us to 

write down analytical formulae for solutions. In Section 3, 
we will give a probabilistic form of the solution operators S1 
and S2 via Feynman-Kac formula. Stability and error 
estimate will be subjects of Section 4. 

In the above algorithm, the solution sequence is driven 
only by v(0) (and image data), so u and v play different roles. 
To recover symmetry between them, a pair of initial  (u(0),v(0)) 
is given, and the sequence of optical flows is generated as 

(u(n+1),v(n+1))=(S1v
(n),S2u

(n)),n=1,2….Equivalently, the sequence 
of approximate solution satisfies the following decoupled 
system 
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This will be called Algorithm 1 from now on. 
If we look at the algorithm every two iterations, it is easy 

to see that they take the following recursive, decoupled 
forms： 
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however, in language of equations, this means 
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This system is of order four, so it is merely used in theoretic 
analysis, not suitable for purpose of practical computation. 

The second way to construct a sequence of 
approximate solutions is as follows： 
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This will be called Algorithm 2 throughout this paper. 
This system has the advantages that each equation is a 

standard Poisson equation and decoupled with another. In 
Section 3, potential integral, harmonic functions and 
Poisson integral are exploited to express its analytical 
solution, while stability analysis and error estimate will be 
given in Section 4. 

The above alternating iteration algorithms remind us of 
the well-known successive iterative method of E. Picard and 
the continuation method of H. Poincaré. 
 

3.   Analytical Solutions for One Step Iteration 
3.1 Analytical Formulae for Algorithm 1: Probabilistic 
Solutions 

The well-known Feynman-Kac formula [7] can be used 
to find the solution operators in Algorithm 1. Since the two 
operators are similar, we concentrate only on S1 : 
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Let  X(t)=(x,y)+B(t) be a Brown motion on the plane 
starting from (x,y), and τ(x,y) being the first time when it hits 
the image boundary. As in PartⅠ [1], we assume that the 
optical flow on the boundary is identically to zero. The 
Feynman-Kac formula asserts that the following expression 
gives solution of the above elliptic equation (similar 
assertion holds for S2 ): 

(10) 
21
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This solution has the following probabilistic meaning: 
1/2(λI2

x) is the “killing rate” of X(t) and the “killing time” ξ 

is independent of X(t), therefore,


t

x dssXI
e 0

2
2
1 ))((

is the 

probability that the process is still “alive” before it hits 
the image boundary, i.e. the probability that it has not 
been killed at time t .  

Thus, the solution u(n)(x,y) is the expectation of the 
trajectory function (–1/2)λ(Iyvn-1+It)Ix|X(t)  conditioned that  X(t) 
is still alive before it hits the image boundary. Another (non-
probabilistic) interpretation is as follows: if the solution is 
viewed as the stationary distribution of temperature, i.e. the 
solution of the heat equation

T
u


 =Δu-λI2

xu-λ(Iyv+It)Ix as T→∞, 

then the negative coefficient -λI2
x means there is cooling 

from outside and -λI2
xu is the rate of decent of the 

temperature. 
The probabilistic solution indicates a Monte Carlo 

implementation of u(n)=S1v
(n-1). Since stochastic simulation 

and statistical average should be carried out for each (x,y), 
the computational load is extremely heavy. Besides, for final 
precision to be acceptable, say O(1/N2) ( N being number of 
pixels of input image), the number of trajectories that should 
be generated at each round is roughly of order O(N4) , thus, 
O(N5) sample trajectories are needed to generate in N 
rounds in order to get an  O(1/N2)  precision. This is a 
common flaw of methods of Monte Carlo type. Moreover, 
although a single sample trajectory starting from one point 
can be used via translation to other starting points, 
however, survival durations and hitting times are different 
for distinct starting points; if we want to sample a single long 
enough trajectory so as to use it for every other points after 
shift, the trajectory must be impractically long such that 
waste is doomed to be expected, especially for those 
starting points which are near the boundary, or those 
starting points which have high killing rates (although by 
theory of stochastic processes, we always have 
Eτ(x,y)<k<∞, (x,y) since the image domain is bounded). 

The solution has several advantages: first, its analytical 
form facilitates theoretic analysis; secondly, both the 
presentation of the strong convergence factor 


t

x dssXI
e 0

2
2
1 ))((

 and the smoothing effect of the expectation 
operation lower the requirement of regularity on (Iyv

(n-1)+It)Ix 
for existence of a solution; thirdly, there is no need to solve 
equations. 

The regularity issue has been discussed in PartⅠ [1]. 
 

3.2 Analytical Formula for Algorithm 2 
For Poisson system in Algorithm 2: 
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the following two-stage treatments are standard [5, 6, 8].  

First, by using the fundamental solution G(x,y)=log(1/r), 

where r= 22 yx  , we can formulate a special solution of 

the system in form of a potential integral [6] (boundary 
condition is yet to be satisfied, and “*” below denotes 
convolution): 

(12) ( ) ( 1) ( 1) ( ) ( 1) ( 1)1 1
2 2*( ( , ) ), *( ( , ) )n n n n n n

x yu G g u v I v G g u v I 
      

where the function g has been defined in (8). 
Second, suppose u1

(0) and v1
(0) are harmonic functions 

on the image domain, which have the same boundary value 
as the potential integrals )(nu and )(nv , respectively, so     
u(n)= u

_
(n) -u1

(n), v(n)=v
_

(n)-v1
(n)

  gives the solution of the original 
problem. From [6] and [1] we know that taking boundary 
values of these potential integrals can be done in classical 
sense.  
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Thus the problem reduces to that of finding harmonic 
functions on image domain with given boundary values; it is 
nothing else but the classical Dirichlet Problem [5, 6, 8]. 

Solution of the Dirichlet problem for upper half plane is 
well-known and gives by a Poisson integral. Therefore, if we 
can find an invertible mapping from the image domain, a 
rectangle, onto the upper half plane, we are done. 
Fortunately, this is again a classical problem that has been 
solved in complex analysis: the desired mapping is given by 
the so-called conformal mapping. 

The harmonic function defined in the upper half plane 
with boundary value φ(s1) is given by the following Poisson 
integral [8] 
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2 2
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z

tkt

dtz
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)( ,0<k<1 be Jacobi’s elliptic 

integral of first type, it is known [8] that it maps the upper 
half plane onto a rectangle, more precisely, it maps the 
following four points on the real axis, i.e. 1, 1/k, -1/k and 1, to 
the four corners of the rectangle with complex coordinates 
ω1/2, ω1/2+iω2, -ω1/2+iω2,and -ω1/2, respectively. Here 
ω1/2=ζ(1) is the complete elliptic integral and 

 
 k

tkt

dt
1

0 )1)(1(2 222
  is the complementary complete 

elliptic integral, and its converse function sn(z)=ζ-1(z) is 
Jacobi’s elliptic function of first type, which maps the closed 
rectangle back onto the closed upper half plane 
conformally. If we redefine the image domain as [-ω1/2, 
ω1/2]×[0, ω2] through shift and scaling, then the 

mapping )(zsns    does the job. 

Therefore, the searched harmonic functions, u1
(n) and 

v1
(n), which have boundary values as that of )(nu and 

)(nv on Ω=[-ω1/2, ω1/2]×[0, ω2], respectively, are given by 
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where s=s1+is2=sn(z), z=x+iy, and  φ(z)=u
_

(n)(x,y)|
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 or 

 v
_

(n)(x,y)|


. 

Finally, the explicit solution of Algorithm 2, or the above 
Poisson equation (8) or (11) with zero boundary value, is 

(15)               
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Justifications of the procedure: 
1) Existence and regularity of potential integrals (12): if         
g(u(n-1),v(n-1))Ix and g(u(n-1),v(n-1))Iy are bounded and integrable, 

then these potentials )(nu and )(nv are well defined, which 
have uniformly continuous derivatives of first order and 
almost everywhere derivatives of second order; moreover, if 
g(u(n-1),v(n-1))Ix and g(u(n-1),v(n-1))Iy are in Lp(p>1), then classical 
Calderón-Zygmund’s theory of singular integral operators 
guarantees that all derivatives of second order are also in Lp; 

furthermore, if g(u(n-1),v(n-1))Ix and g(u(n-1),v(n-1))Iy are Hölder 
continuous with order α>0 , then these potentials are Hölder 
continuous with order 2+α and satisfy the Poisson system 
everywhere [6]. By Theorem 3 of PartⅠ [1], this is indeed 
the case; 
2)  Smoothness of the Poisson integral (13) and its 
continuity when approaching to the boundary: the Poisson 
integral defines a harmonic function so it is infinitely 
differentiable in the interior; the Poisson integral converges 
to its boundary value non-tangentially once the boundary 
value is itself continuous; since the boundary functions are 

indeed smooth according to [1], when approaching from the 
interior domain to the boundary non-tangentially, the 
convergence holds at every boundary point [8]; 
3)  The above solution can be used both in theoretical 
analysis and practical numerical computation. 
 

4. Globally Exponential Convergence and Rate of 
Convergence 

According to the Lax equivalence theorem cited in Part
Ⅰ[1], every approximate solution sequence yielded by a 
linear iteration is convergent if and only if the iterative 
scheme is stable, provided that the iteration is consistent. 
The consistency of these algorithms is apparent since they 
come from direct modifications of the original system. Only 
stability is to be established. Here we adopt a strategy 
different from that has been used in PartⅠ [1, 11]: after 
energy inequalities have been obtained, the celebrated 
Banach fixed point theorem for contraction mappings is 
used to show that the distance between two approximate 
solutions contracts by a factor less then 1 under iteration so 
that globally exponential stability is concluded. Uniqueness 
and convergence of the limit solution are natural 
consequences. Besides, rate of convergence and exact 
solution in form of series expansion are obtained. 
 

4.1 Algorithm 1 
Both two interpretations of the probabilistic solution 

indicate stability. In the following analysis, only the iterative 
equation is used, while the probabilistic expression does not 
appear anymore. 

On the image domain Ω=[0,M]×[0, N] , the equation for 
u(n ) is (with boundary value zero) 
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As in PartⅠ [1], energy inequality of elliptic equation [1, 5] 
gives (where C arises from Friedrichs inequality [5]) 
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By linearity, Δu(u(n)-u(n-1))-λI2
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this we have, by similar argument as above 
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where Schwarz inequality is used in the second step, and 
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For digital images, the gray levels are finite, so is C12(I) .  
A stronger argument comes from Theorem 3 of PartⅠ[1]; 
for generic images, C12(I)>0, i.e. each image is not flat 
everywhere. Using L2 norms, the above inequality can be 
rewritten as 
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Therefore, when ,1)(12 ICC we have 
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From (24) we know that the function sequence 
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on Ω is convergent in L2. Denote its limit function as u*, also 
denote α=(CC12(I)λ)

2, we have the following error estimate 
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

     

 

 

which implies that the algorithm is not only convergent in L2 

but globally exponential stable also, besides, its unique limit 
satisfies the Horn-Schunck system. From Theorem 3 in Part
Ⅰ[1], the solution is infinitely smooth, so the unique L2 limit 
equals to the exact solution everywhere. 

Exponential convergence of the approximate solutions 
enables that we can view this alternating iteration as a 
coarse-to-fine algorithm. 

Although the unique limit is independent of initial guess 
of optical flow, for purpose of faster convergence, there is a 
particular choice as follows, as a consequence of qualitative 
observation made in PartⅠ, i.e. 

(27)                      
2 2

( 0 )

( 0 )
t

x y

xI

I I
y

Iu
Iv 

  
    

   
 

 

This is exactly the component paralleling to image 
gradient and given directly by considering only the 
fundamental constraint. To satisfy the standing assumption, 
the initial values on the boundary are forced to be zero. 
 

4.2 Algorithm 2 
Similarly, for system defined on image domain        

Ω=[0,M]×[0, N] (with zero boundary values) 

(28)              

( ) ( 1) ( 1)

( ) ( 1) ( 1)

( )

( )

n n n
x y t x

n n n
x y t y

u I u I v I I

v I u I v I I





 

 

   

   
 

two energy inequalities can be derived 

(29) 

2 2( ) ( 1) 2 2 2 ( 1) ( 2) ( 1) ( 2)

2 2( ) ( 1) 2 2 ( 1) ( 2) 2 ( 1) ( 2)

( ) ( )

( ) ( )

n n n n n n
x x y

n n n n n n
x y y

u u dxdy C I u u I I v v dxdy

v v dxdy C I I u u I v v dxdy





    

 

    

 

    

    

 
 

 

 

where the constant C is as in [17]. Denote C2
12, C2

11, C2
22 

being integral of |IxIy|
2, |Ix|

4, |Iy|
4 on Ω, respectively 

(dependence on I is omitted), an application of Schwarz 
inequality yields 

(30) 
( ) ( 1) ( 1) ( 2) ( 1) ( 2)

11 122 2 2

( ) ( 1) ( 1) ( 2) ( 1) ( 2)
12 222 2 2

n n n n n n

n n n n n n

u u C C u u C v v

v v C C u u C v v





    

    

      
      

 

In matrix notation, this means 

(31) 
( ) ( 1) ( 1) ( 2) ( 1) ( 2)

2 2 211 12

( ) ( 1) ( 1) ( 2) ( 1) ( 2)
12 22

2 2 2

n n n n n n

n n n n n n

u u u u u uC C
C A

C Cv v v v v v


    

    

                            
 . 

 

The eigenvalues of  A are 

(32)       2 2
1 11 22 11 22 12( ) 4s C C C C C C       

, 

 

and 

(33)       2 2
2 11 22 11 22 12( ) 4s C C C C C C       

. 

 

Both eigenvalues are nonnegative since C2
12≤C11C22 by 

Schwarz inequality; furthermore, s1=0 means that I is flat 
everywhere, while s2=0 amounts to that I is flat along x axis, 
or I is flat along y axis, or |Ix| and |Iy| linearly correlate. 
Obviously, all these possibilities are not generic. Therefore, 
for generic images, both eigenvalues are positive, so when 
λ is small enough, both eigenvalues are less than 1 and the 
algorithm globally exponential converges in L2. In the non-
generic cases, the eigenvalues will be smaller and the 
conclusion still holds. 

Similar comments apply as in the previous subsection. 
 

5.   Conclusions and Discussions 
Two decoupled form of alternating iteration algorithms 

are proposed to solve the Horn-Schunck system though the 
later is coupled per se. Analytical solutions for each single 
iteration are explicitly given via several standard techniques 
from theory of scalar elliptic equations and complex 
analysis. These algorithms are obviously consistent. 
Exponential stability is established using Banach fixed point 
principle for contraction mappings.  

One may criticize that in both algorithms PDEs need to 
be solved one after another thus they do not have practical 
merits. Things are not that bad, since by exponential 
convergence, only a small number of PDEs are needed to 
be solved in practice, moreover, if we code these analytical 
formulae, they can become true algorithms. This has been 
completed in a companioned paper. Another flaw of these 
algorithms comes from the fact that these algorithms 
converge only for small relevant parameters, especially for 
small λ. The estimates obtained are surely conservative. 

After this paper had been completed, the contributions 
[9] and [10] suddenly came into our view and has since 
greatly encouraged us. We would like to make some 
comments. The following comments will involve all our three 
papers of this series. 

Both [9] and [10] concerned the convergence issue of 
the Horn-Schunck algorithm and obtained similar positive 
results as ours, i.e. the classical algorithm is exponentially 
convergent, however, several differences exist between 
theirs and ours:  

1) They concerned only the performance of the original 
classical algorithm while we studied both that algorithm and 
the Horn-Schunck system itself (including its well-
posedness, its decouplability, and the relationship among 
the system, the original variational formulation, and the 
discrete algorithm);  

2) Their methods are both purely algebraic, while we 
used both algebraic and analytic methods;  

3) We have carried out a lot of experiments which 
validated our assertions while they did not;  

4) We proposed two alternating iteration algorithms and 
studied their performances while they did not; 

5) We discussed the regularity issue both about the 
solution of the Horn-Schunck system and about natural 
images while they did not care. 
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