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Abstract. Smart grid is the main development goal of future power grid while the short-term load forecasting is the significant premise of making 
management, power supply and trading plan in market circumstance. The forecasting accuracy directly determined the safety and economy of 
electric system. Support Vector Machines (SVM), as the new machine learning method, has applied successfully to short-termed load forecasting. 
However, research finds out that the singular points of the initial data have impact on forecasting accuracy. So in this paper, firstly, based on the 
analysis of SVM, we render Weighted Least Square and Support Vector Regression (WLS-SVR) applying to short-termed load forecasting, which 
overcomes the disadvantage of singular points. Secondly, we offer Threshold Generalized Autoregressive Conditional Heteroskedasticity (TGARCH) 
model to construct error prediction model to modify the initial predicted value. Finally, according to the PJM historical data, we get the results 
showing that the accuracy is greatly improving by implementing our methods which makes our methods founded. 
 
Streszczenie. W artykule przedstawiono model przewidywania krótkookresowego obciążenia sieci elektroenergetycznej. W proponowanym 
rozwiązaniu wykorzystano metodę SVM (ang. Support Vector Machine). W celu eliminacji istniejącego wpływu wartości syngularnych na dokładność 
wyniku, zastosowano regresję ze średnią ważoną. Dodatkowo wykorzystano model TGARCH w określaniu błędów predykcji.  Przedstawiono wyniki 
badań weryfikacyjnych, przeprowadzonych na rzeczywistych danych. (Przewidywanie krótkoterminowe obciążenia inteligentnej sieci 
elektroenergetycznej z wykorzystaniem modelu WLS-SVR oraz korekcji błędów modelem TGARCH). 
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1. Introduction 

Smart grid, as the new electric net system, by data and 
information way to achieve the opening and sharing 
information, can highly integrate the data, optimize 
operation and management of net infrastructure and 
promote the consumption of electricity by interaction. 
Recently, many countries and areas have many researches 
on the smart grid. For instance, in USA, there are IntelliGrid 
[1] Grid2030 [2] GridWise [3]; In EU, there are smart gird 
based on European technology [4]. As the massive 
construction of smart gird, the market revolution even takes 
bigger stride. But the prediction accuracy and efficiency is 
on the call of improvement no matter whether on stability or 
the market allocation of electric net. 

Short-termed load forecasting is the base of making 
purchasing electricity plan and arrangement of operation as 
to improve the quality of supplying electricity. So we need to 
improve the prediction accuracy. But most prediction theory 
and methods are based on statistical regression [5] and 
time-series model [6-7]. However, the Influencing factors 
are so many and the load curve is non-linear. In order to 
combine all the influencing factors, the ANN model [8], 
fuzzy model [9] based on smart algorithm are used wildly. 
But the Artificial Neural Networks (ANN) model and fuzzy 
model lacks the breakthrough of generalization in theory. 
Recently, a new learning nerve learn LS-SVR attracts lots 
attention.LS-SVR is a new learning methods rendered by 
Vapnik [10]. It based on the structural risk minimum 
principle by solving a quadratic programming to get rid of 
little sample, non-linear, high-dimension and minimum point 
in local condition. Suykends [11], expanded the SVR to LS-
SVR, which converts the quadratic programming into linear 
simultaneous equations. The LS-SVR is easy in 
construction and simple in algorithm with better 
convergence speed but it has drawback too, such as the 
looseness. In order to overcome this problem, Suykends 
renders WLS-SVR. 

In practice, the error prediction is a compound 
stochastic process. The series subtly include some 
information that the prediction model does not. On one 
hand, the state series in a model predictive ability 
determines the ability in certain time (higher, lower or 

common).On the other hand; it also reflects the predicted 
errors which are the actual ones. If we can find out the  
 
regular pattern of the model by the historical predicted data, 
we can certainly predict the error in order to modify the 
initial prediction so we can improve the accuracy [12,13]. As 
the predicted errors have autocorrelation, by digging out the 
inner information, we are able to predict value in the next 
time. Then we modify the prediction value of growth rate of 
the load. By means of case stimulant, we can conclude that 
the TGARCH model is high efficient in predict the fluctuate 
of the short-termed load and reflect the time-change feature 
of conditional predicted errors, which to some extent 
improve the prediction accuracy of time series. 

In this paper, we combine the advantages of WLS and 
SVR to construct a WLS-SVR prediction method and use it 
to predict the short-termed electric load. It can diminish the 
influence of noise. Then we consider the predicted errors as 
a time series. By using TGARCH model we get the modified 
error series to modify the initial predicted value of load. At 
last, the case study compares ANN, GM (1,1), LS-SVR and 
the method presented in our paper, proving the superiority 
of the model constructed in our way. 
 

2. The Traditional Model of LS-SVR 
LS-SVR expands standard SVR by optimizing the 

square of relaxation factors and converting the constraints 
of inequality to equality, so the quadratic programming 
problem in traditional SVR becomes linear simultaneous 
equations, thus the calculating difficulty reduces a lot in 
company with the solution high efficiency and convergence 
speeding up. 

The basic method of SVR: 

Define nx R  and y R , let nR  be the input space, 

by nonlinear transformation ( )  , we let in the input space 

x  map into a high dimensional characteristic space where 
we use the linear function to fit sample data while making 
sure the generalization. 

In the characteristic space, the linear estimation 
function is defined as: 

 (1)                        ( , ) ( )Ty f x x b                             

where   is the weight and b  is the skewness. 
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The aim function is:  
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Where hR  is the weight vector and ( )  is non-linear 

mapping function, 1N
i R  is relaxation factor, b R  is 

the skewness while 0C   is penalty factor. 

Importing factors, 1N
i R  , we can easily get the 

function as: 
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According to the KTT we get 
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Where E  is the matrix whose elements are all 1, I  is 
a N N  identity matrix. 

Inner product of regression in non-linear function can 
be replaced by kernel function satisfied Mercer . 

Let T
ij   , then 

(7)                        ( ) ( ) ( , )T
ij i j i jx x K x x                       

We then have the LS SVR  regression function model 
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Kernel function commonly used in practice are linear 
kernel, polynomial kernel, and RBF kernel, we use the RBF 
kernel as our kernel function for its better generalization. 
The form is as following: 

(9)       2( , ) ( ) ( ) exp( / 2 )i j i j i jK x x x x x x                

In which the regularization parameter C  and kernel breadth 
  is the crucial parameters of LS SVR . 
 

3．Modified Model Building 
This section presents the fundamental knowledge of 

LS-SVR. Suppose a set of data 

  (10)   {( , ) , , 1,..., }n
i i i iT x y x X R y Y R i N           

Where n
ix R are given as inputs, n

iy R are the 

corresponding outputs. SVR theory is to find a nonlinear 
map from input space to output space and map the data to 
a higher dimensional feature space through the map, and 
then the following estimate function is used. 

  (11)                     ( ) ( )Tf x x b                     

where ( )x maps the input data to a higher dimensional 

feature space,  is a weight vector, and b is the threshold 

value. ( )f x is the regression estimate function which 

constructed through learning of the sample set. In the LS-

SVR for function estimation, the objective function of 
optimization problem, is defined as 
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Subject to the constraints 

 (13)         ( ) ( ) , 1, 2,...,T
i if x x b i N                     

where 
2 is the weights vector norm, which is used to 

constrain the model structure capacity in order to obtain 
better generalization performance. C is the user-defined 
regularization constant which balances the model’s 
complexity and approximation accuracy, and i is the 

approximation error. 
Estimation of support values in the LS-SVR is optimal 

only when there is a Gaussian distribution of error variables. 
When, however, a Gaussian assumption for error variables 
is not realistic, it may lead to less robust estimates. This is 
because the SSE cost function of the LS-SVR, which 
assigns an equal weight to error at all times, treating all 
data equally, gives less precisely measured points more   
influence than they should have and highly precise points 
too little influence. To obtain a robust estimate when the 
distribution is not a normal Gaussian one, a correction must 
the distribution is not a normal Gaussian one, a correction 
must be made by defining weights based on the error 
distribution; the so-called weighted LS-SVR method. 
To modify these weights to obtain a robust estimate based 

on the previous LS-SVR solution. In the main space nR , a 
new objective function of the optimization problem shown 
as follows. 
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(15)         . . ( ) , 1,...,i i is t y x b i N                    

Where J is loss function, 1N
i R  is relaxation factor, 

( )  is the nonlinear mapping function,  

( )  put the input vectors x X of system input space 
nX R map to the input vectors ( )x H  of the high 

dimensional feature space H . 

With the Lagrange multipliers 1N
i R  are introduced

，the Lagrange function is given by 
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The Karush-Kuhn-Tucker (KTT) conditions for 
optimality are given by 
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After elimination of i  and , it reduction to a matrix form 
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There  11 ,...,1C NV diag C C  ,  1 2, ,...,
T

N     

,  1 2, ,...,
T

Ny y y y , E is the weight value variable, and 

E is an 1N  identity matrix,  is N N  Hessian matrix, 
and  follows Mercer’s condition. 

(18)        ( ) ( ) ( , ) , , 1, 2,...,T
ij i j i jx x K x x i j N         

Esq. (10) and (15) provide the final result of the LS-SVR 
model for function estimation, and then the following 
estimate function is the regression function model of WLS-
SVR. 
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As choices of kernel function, there are several 
possibilities, Kernel function commonly used in practice are 
linear kernel, polynomial kernel, and RBF kernel. The kernel 
selected in this paper is the RBF kernel as it has better 
generalization. Its expression form is as following. 

(20)        2( , ) ( ) ( ) exp( / 2 )i j i j i jK x x x x x x            

Where the regularization parameter C  and kernel 
breadth   are the crucial parameters of the WLS-SVR. 

The WLS-SVR reflects the behavior of the random 
errors in the model, through introduce weight factor 

( 1,..., )i i N  to correct the approximation error vector   

of the LS-SVR, and then its algorithm has better robust. 
One common choice for i has been given by Suykens et 

al. 
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 (22)                            ˆ 1.483 ( )s MAD                               

Where ŝ  is a robust of the standard deviation of the 

LS-SVR error variable i i C  , which denotes how much 

the estimated error distribution deviates from a Gaussian 
distribution. MAD is the middle of error absolute value. The 
constants 1 2,c c  typically are chosen to be 1 2.5c  and 

2 3c  . 
 

4.  Testing the Adequacy of the GARCH Model 
Consider a time series model with the following 

structure: 
(23)                            ( ; )t t ty f w                                 

Where f is at least twice continuously differentiable 

with respect to  , for all ' ' '
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t t t ny y y R 
     and exogenous 

'
1( , , ) k

t t ktu u u R  , everywhere in  .The error is 

parameterized as 

 (24)                                     1 2
t t th                                  

Where { }t is a sequence of independent identically 

distributed random variables with mean zero, unit variance 

and 3 0tE  . The conditional variance '
t th s such that  

2 2 '
1 1(1, , , , , , )t t t q t t ps h h       and '

0 1 1( , , , , , , )q p         

with 0 0  ,whereas 1 1, , , , ,q p     satisfy the 

conditions in Nelson and Cao [14]that ensure the positivity 
of th .These conditions allow some of the parameters to be 

negative, unless 1p q  .Esq.(24) is thus the standard 

( , )GARCH p q model. We assume regularity conditions 

hold such that the central limit theorem and the law of large 
numbers apply whenever required. For such conditions in 
the multi-vitiate ( , )GARCH p q  case; see Comte and 

Lieberman [15]. In the univariate case, their conditions 
require the density of t to be absolutely continuous with 

respect to the Lévesque measure and positive in a 
neighborhood of the origin. Further-more, it is required 

that 8
tE   , which of course implies further restrictions on 

the density of t . 

The assumption 3 0tE  that Comte and Lieberman do 

not need guarantees block diagonality of the information 
matrix of the log-likelihood function. However, it is not just a 
technical simplification. We shall consider, among other 
things, a test that has power against asymmetric response 
to shocks. In deriving such a test it is appropriate to assume 
that the conditional distribution of t given th  is not skewed. 

In order to consider the adequacy of the GARCH 
model, we formulate a parametric alternative to the model. 
Assume that in Esq. (24). 

 (25)                                   1 2
t t tz g                                    

Where { }tz is a sequence of independent, identically 
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It could be called an “ARCH nested in GARCH” model 

as 2 2 , 1, ,t j t j t jh j m      .We want to test 0 : 0H    

against 0  and thus follow the standard practice of 
choosing a two-sided alternative although the elements 
of  are constrained to be non-negative. Under this 

hypothesis, 1tg  , and the model collapses into a 

( , )GARCH p q  model. (For ways of testing 0 : 0H     

against 0  when 0th  ,see Lee and King [16] and 

Demos and Sentana [17]) 

We introduce the following notation. Let t̂ and ˆ
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The quasi maximum likelihood approach leads to the 
following result: 
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with 2 2

1

ˆ ˆ ˆˆ(1 ) ( 1)
T

t t t
t

h k T h


  is a consistent estimator of 

the inverse of the covariance matrix of the partial score 

under the null hypothesis; has an asymptotic 2 distribution 

with m degrees of freedom. 
 
5.  TGARCH Error Correction Model Building 

As the returns of load is a time-series, in clear 

illustration, we let the time space as t D D   , 

Where the D  represents the past time space, so the 
returns are the foundation in constructing the model as they 
are known to all. 

D represents the prediction time space, where we 
have no idea of the rates. Assumed that the historical data 
can reflect the time change feature of returns, we are able 
to construct a prediction model that reporting the history 
data variation tendency. 

Thus we get predicted value series ˆ{ : 1, , }ty t N   

and corresponding error value series{ : 1, , }t t N    .What 

we care is the key factors while ignoring the secondary 
factors, which leads to prediction error. In order to fix it, we 
bring in the modification process. In fact, we can let the 
product error be a series { : 1, , }t t N     and consider 

t to be a new stochastic process, so we can build the 

prediction model for t  and get its residual error series 

ˆ{ : 2, , 1}t t N     , the adjusted initial predicted value are   

(27)                                   ˆˆt t ty y                                       

The model of TGARCH is used to describe the stable 
stochastic time series. By logarithmic transformation ，
conditional variance may turns out to be negative. Besides, 
during the calculation there are no parameter constraints, 
so the complex of calculation is trimmed while the efficiency 
goes up. Meanwhile, it can easily used in auto-correlation 
elimination of fluctuation ration in asymmetric information 
circumstance. 

This paper applies the TGARCH model to construct 
an error forecast model based on the returns of load 
predicted error time series. 

The chosen TGARCH model is: 
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The model of TGARCH is used to anal the stability and 
not pure stochastic series. Thus, after we get the error 
series of returns of load, what we do first is undertaking 
stability test of root of utility. If unstable, then use difference 
method to make it stable. Next, We can get the TGARCH 
order ( , , )p d q  after knowing Lagrange multiplier LM  and 

Q statistic for correlation test, which take step after 

ACF and PACF . We estimated the parameters by some 
methods to choose the best TGARCH model to fit error 
series. 

The specific model constructing and prediction flow 
path are showed in figure 1.  
 

 
Fig.1. The flow path of constructed model including error correction 
 
6．Case Studies 
6.1 Selection of Trained Sample Data 

In this paper, we choose hourly load data from May 1, 
2007 to July 31, 2007 of Pennsylvania—New Jersey—
Maryland (PJM) as the training sample data. There are 
2193 valid sample data. We choose hourly data as the 
sample data series to analyze. And then, we predict the 
change rate of the 168 hourly time point. After 
getting ˆ , 1, 2, ,168ty t   , we can use those predicted error 

, 1, 2, ,168t t     in according with ˆ , 1,2, ,168ty t    to 

construct time series model, meanwhile we predict the 
afterward 24 errors and get ˆ , 169,170, ,192t t    .Finally, 

and we get the eventual predicted value by means of the 
formula (27). 

We suppose hourly electricity load as tk ，and define 

the change rate of electricity load as ty ，whose method of 

calculating is as below: 
 (29)                                1ln( )t t ty k k                                

 
6.2 WLS-SVR Prediction Model Using Trained Sample 
Data. 

Here we implement WLS-SVR model to the historical 
data and meanwhile to get the predicted error. The effect is 
showed as the below figure. 

 

 
Fig. 2. The error of Prediction using WLS-SVR 
 
6.3 Error Predictive Model and Analysis 

As shown in figure 2, we need to have a further 
analysis on the predictive error t  
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Table .1. Output of descriptive statistics of Predictive error t  

N 168 
Mean 0.02673 

Std  Deviation  2.24623 
Skewness -0.33733 
Kurtosis 5.37425 

Maximum 0.08575 
Minimum -0.09346 

Jarque-Bera 479.3341 
Probability 0 

 

We can see from the Table 1 that the kurtosis is 
5.37425 ， much bigger than the kurtosis of normal 
distribution, namely 3. The skewness is-0.33733,J-B 
statistics is 479.3341 and P value is so much close to 0.It 's 
clear that the time series of predictive error of returns don't 
obey the normal distribution, for it equipped with' High 
Kurtosis and Fat Tail', antisymmetric，Mean 0 and left 
skewness. 
 

Table .2. The Stability Test Result of predictive error t  

 ADF Magnificent Level 
  (1%)  3.426985 

ln t  
 -39.3018 

 
(5%)   2.876217 

 (10%)  2.567311 
 

We can see for Table 2 that the ADF  statistic of t  is 

-39.30182, smaller then the marginal value -3.426985 in 
significance level 1%. Absolutely it is smaller than the other 
two marginal values. So the assumption that the time series 

of t is stable is of sound ground. 
 

Table .3. Testing the ARCH impact on t  

F-statistic 18.996 P value 0.000 
R2 71.468 P value 0.000 

 

From the Table 3, we can see the feature aspect of t  

The fluctuation of the series has the gregarious and 
consistency. So we can infer that the fluctuation has ARCH 
effect. However, up to now we still have to test in quantity 
aspect. In the context, we apply LM  to test its ARCH 
effect. When the 4q  , we get the result show as in Table 

3. 

The concomitant probability of both F  and 2R are very 
low which indicating that only if 4q  ，there exists high 

order ARCH effect. In a result, it's not a smart idea to apply 
( )ARCH q model when studying t  we should consider 

using GARCH to construct our model and predict values. 
Given by estimation of parameters of TGARCH model, 

we use the estimation into our TGARCH regression 
function. 

(1) Mean value function: 

1ln 1.00375 lnt t     

(2)Variance function: 
2 2 2 2

1 1 10.312587 0.147986 0.861578 0.128t t t tr r           
 

2 0.9976R  , 1.97DW  , Log likely hood =2569.3, 
4.96AIC   , 4.96SC   . 

The above results indicate that every parameter is 

significant. The 2R of the model is so big as 0.9976 
with 0.001725 0   . That proves there is exist 

asymmetric error information. From all the above results, 
we can safely believe the success of fitting data by the 
method rendered in this paper. 

After the further step on the prediction of error t by 

using TGARCH model，we make a comparison between 

the modified t̂ and the original t in the following figure.  

 
Fig. 3. Modified t̂  vs. original t  

 

The modified errors have the tendency of whole 
shrinking as we can see obviously from Figure 3. 
 
6.4 Select the Two Ratios Below to Justify the 
Superiority of the Methods in This Paper 

(30)             (a): 
1

1
ˆ( )

N

t t t
i

MAPE x x x
N 

                          

(31)             (b): 2

1

1
ˆ[( ) ]

N

t t t
i

MSPE x x x
N 

                      

 

tx is the real value of t moment while ˆtx  is the predicted 

value by some method. We list different results using 
different methods in the Table 4 
 

Table .4. Compare Different methods' ratio of MAPE  
and MSPE . 

ration MAPE  MSPE  
Our model 0.0356 0.0175 

LS SVR  model 0.0798 0.0581 

GM model  0.1135 0.0816 

ARMA  model 0.1247 0.0847 

 
From Table 4, we can see the two ratios resulted from 

our method are less than other methods, which justify the 
fact that the model we presented here is effect in improving 
accuracy. 
 
7.   Conclusions 

Short-termed load forecasting and the predicted error 
model is one of the key problems that require attention and 
solution in the working of power system in smart grid 
situation. Load has stochastic and stable time features, so 
the single traditional forecasting model fails to satisfy the 
need of decision. In this paper, we analyze the selection of 
SVR parameters and render to apply the WLS-SVR model 
to construct the short-termed load forecasting, which 
overcomes the drawback of singular points in traditional 
SVR. The new model shows that it has advantage in non-
linear data disposal and generalization of unknown sample 
data. Meanwhile, we model and analysis the predicted error 
series by using TGARCH model which results in modified 
error series. The modified one is better in accuracy than the 
initial one. The prediction method in our paper reveals the 
discipline of load historical data and the correlation between 
the prediction methods and their predicted variance, which 
opens a brand-new way to forecast short-termed load with 
bright application future. 
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