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Abstract: Electricity consumption forecasting is considered one of the most important tasks in energy planning, and it has great significance on 
management decision-making for power generation organizations and power policy adjustments for governments. In this paper, we present a new 
semi-parametric regression model for consumption forecasting in electrical power systems. We have used the distribution function of student 
residuals to replace the nonparametric component of the traditional semi-parametric model, thus eliminating the effects of the residual disturbance 
term according to the change trend of the consumption data themselves. Then, we use differential element theory set information aggregation 
intervals to create a dynamic weight distribution and improve the forecasting accuracy of the prediction models. Compared with general linear 
models, our models make statistical inferences and can automatically regulate the boundary effect, which gives the forecast result a higher 
accuracy. To present a case study, we use the historical data of electricity consumption and related influential factors in China from 1981 to 2010. 
The simulation results show that both in the model building stage and in the testing stage for this particular case, the SPRM prediction approach 
proposed in this paper outperforms the other two contrast models,  the MAPE of SPRM is 3.21%, much lower than the other two values 3.84% and 
13.07%. 
 
Streszczenie. W artykule opisano model regresji semiparametrycznej do przewidywania zużycia energii elektrycznej w systemach 
elektroenergetycznych. W celu eliminacji wywołujących zakłócenia, nieparametrycznych składowych w tradycyjnym modelu semiparametrycznym, 
zastosowano  rozkład studenta. Wykorzystano także metodę różnicową w ustalaniu interwałów zbierania danych, analizowanych przy 
przewidywaniu. Działanie i skuteczność modelu zweryfikowano z wykorzystaniem prawdziwych danych z lat 1981 do 2010. (Analiza i 
modelowanie przewidujące w elektroenergetyki w Chinach – model regresji semiparametrycznej). 
 
Keywords:  Electricity consumption; Forecasting; Semi-parametric regression; Information aggregation intervals; Dynamic weight 
distribution 
Słowa kluczowe: zużycie energii elektrycznej, przewidywanie, regresja semiparametryczna, interwały zbierania informacji, dynamiczny 
rozkład wag. 
 
1 Introduction 

Electricity consumption forecasting is an important and 
integral component in the operation of any electric utility 
whose accuracy directly influences a power system’s 
security, profitability and quality. According to the difference 
of the prediction mechanism, for electricity consumption 
prediction, the literature always considers two main 
problems: mid-long-term consumption forecasts (M-LTCFs, 
i.e., the annual consumption forecast) for system planning 
and short-term consumption forecasting (STCF, i.e., the 
monthly consumption forecast) for maintenance programs. 
However, the accuracy of consumption forecasting has a 
significant effect on power system planning and operation, 
which means that scientific analysis and precise forecasting 
are even more important. The focus of the present work is 
on M-LTCFs of annual electricity consumption because it is 
one of the most important factors for the government to 
consider when adjusting their power policies. 

Adequate electricity production requires that each 
relevant department of the power system be able to forecast 
its consumption accurately. However, predicting electricity 
consumption is complex because there are many influential 
factors that characterise and directly or indirectly affect the 
underlying forecasting process of annual electricity 
consumption. Most of these factors are uncertain or 
uncontrollable. These factors can be grouped into two 
categories: realistic factors (RFs) and simulation factors 
(SFs). RFs, such as climate factors, social activities or 
economic indicators, can affect the real expected value of 
electricity consumption; at this time node, electricity 
consumption data are not yet gathered, as this kind of RF 
acts before the predicted behaviour. SFs, such as 
reasonable selections of prediction models, can affect the 
presumable predictive value of electricity consumption; at 
this time node, actual consumption data have been 
generated, as this kind of SF acts in the process of 
prediction. 
The aim of the present paper is to analyse and forecast 

annual electricity consumption in China utilising a semi-
parametric regression approach. To integrate the 
consumption data more accurately and effectively on the 
basis of the semi-parametric regression approach 
mentioned above, this paper uses a differential element 
method to set consumption information aggregation intervals 
and make dynamic weight distributions. 

The remainder of the paper is organised as follows: 
Section 2 offers a literature review to introduce the different 
techniques used on the analysis and forecasting of 
electricity consumption, Section 3 introduces an overview of 
electricity consumption in China, and Section 4 discusses 
the methodology and the data of the study, and it provides 
an accurate model for electricity consumption forecasting. 
We present a case analysis and result comparisons in 
Section 5, and, finally, we present our conclusions. 

 
2 Literature Review 

Although consumption forecasting is difficult to 
implement, research on consumption forecasting has 
attracted wide attention, as the need for and relevance of 
forecasting electricity consumption has become a much-
discussed issue in recent decades. There are many 
scholars engaged in efforts to improve the accuracy of 
forecasting methods. Generally speaking, from the 
classification analysis of the predictive behaviour itself, the 
methodology for electricity consumption forecasting can be 
divided into three categories: a).numerical approximation 
class processing methods; b).statistical regression class 
processing methods and c).intelligent optimisation class 
processing methods.  

First, numerical approximation class processing 
methods (NACPM) rely on variations of the data themselves 
to find information supporting predictive behaviour; these 
methods do not consider the effects of the other factors. 
Based on this method, many scholars have drawn a number 
of useful results. Vincenzo Bianco et al. [1] analysed and 
forecasted non-residential electricity consumption in 
Romania by utilising a grey prediction model and a Holt-
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Winters model. The author compared the forecast results of 
the two prediction models and checked the reliability of the 
predictions. Wang et al. [2] investigated a dynamic GM (1,1) 
model based on the cubic spline function interpolation 
principle to forecast electricity consumption in China. The 
author used piecewise polynomial interpolation thought 
processing annual electricity consumption data to analyse 
the electricity consumption trends to make mid-long-term 
predictions. In reference [3], Diyar Akay et al. proposed a 
kind of grey prediction model to predict the Turkey’s total 
and industrial electricity consumption, the author used rolling 
mechanism improved the traditional grey model and 
obtained high prediction accuracy.  In references [4], Wang 
et al. used Gauss orthogonalisation theory to improve the 
grey prediction model, and, in constructing the grey 
combinative interpolation model to forecast electricity 
consumption in China, they achieved good prediction 
results. Wang also introduced the Markov Chain theory to 
the grey combinative interpolation model and constructed 
the Markov grey orthogonalisation model ([5]) for electricity 
consumption prediction, which also obtained good prediction 
accuracy.  

Next, statistical regression class processing methods 
(SRCPM) often consider the synergy of multiple factors 
affecting predictor variables to measure predictive 
behaviour. Statistical regression class methods are widely 
adopted for the electricity consumption forecasting problem. 
For example, Roula Inglesi [6] analysed the relationship 
between electricity demand and income, price and 
population in South Africa and forecasted the electricity 
demand by creating a model using the Engle-Granger 
methodology for cointegration and error correction. Ching 
Lai [7] investigated the impact of weather variables on 
monthly electricity demand in England and Wales. A multiple 
regression model was developed to forecast monthly 
electricity demand based on weather variables, gross 
domestic product and population growth. Egelioglu et al. [8] 
studied the influence of economic variables on the annual 
electricity consumption in northern Cyprus during the period 
1988-1997. Through multiple regression analysis, it was 
found that the number of customers, the price of electricity 
and the number of tourists correlated with the annual 
electricity consumption. Wei et al. [9] estimated the long-
term electricity load by applying system dynamics, which 
constructs the model according to an analysis of the 
historical electricity consumption. This method revealed the 
great influence of uncertain factors, such as economics and 
policies. Narayan and Prasad [10] studied the causal effects 
between electricity consumption and real GDP for 30 OECD 
countries using the bootstrapped causality testing approach 
to show how electricity consumption affects the real GDP in 
Australia, Iceland, Italy, the Slovak Republic, the Czech 
Republic, Korea, Portugal and the UK. The implication was 
that electricity conservation policies would negatively impact 
the real GDP in these 8 countries mentioned, but not the 
remaining 22 countries. Nikolopoulos et al. [11] compared 
multiple linear regression (MLR) with an artificial neural 
network, a nearest neighbour analysis and human judgment; 
the application results showed that the MLR was less 
accurate than the other methods because of its inability to 
handle complex non-linearity in the relationship between the 
dependent variable and the cues and because of its 
tendency to misaddress the in-sample data. Abdel-Aal et al. 
[12] applied an AIM (abductor induction mechanism) model 
to the domestic consumption in the eastern province of 
Saudi Arabia in terms of key weather parameters, 
demographics and economic indicators. It was found that an 
AIM model, which uses only the mean relative humidity and 
air temperature, gave an average forecasting error of 

approximately 5-6% over the year. Yan [13] also presented 
residential consumption models using climatic variables for 
Hong Kong.  

Finally, intelligent optimisation class processing methods 
(IOCPM) simulate or reveal some natural phenomena to 
obtain optimisation methods that adapt to the environment 
and thus solve the combination forecasting problems that 
are difficult for traditional forecasting techniques to address 
by presenting a series of practical programs. Research on 
IOCPM has provided new and useful ideas for the predicting 
behaviour itself. M.R. AlRashidi et al. [14] presented a 
particle swarm optimisation (PSO) algorithm to forecast the 
long-term electric load in Kuwait. The PSO algorithm was 
employed to minimise the error associated with the 
estimated model parameters, and it improved the accuracy 
of prediction. Nasr et al. [15] presented an artificial neural 
networks (ANN) approach to electrical energy consumption 
forecasting in Lebanon. They presented and implemented 
four ANN models: a univariate model based on past 
consumption values; a multivariate model based on energy 
consumption forecasting time series and degree days; a 
multivariate model based on energy consumption 
forecasting total imports; and a model combining energy 
consumption forecasting, degree days and total imports. 
Metaxiotis [16] provided an overview of studies examining 
artificial intelligence (AI) technologies and their current use 
in the field of short-term electrical load forecasting. Santos 
[17] also used the ANN algorithm to make load forecasts; in 
this method, the possibility of including weather-related 
variables in the input vector was also analysed. 

 
3 Analysis and Determination of Influencing Factors on 
China’s Electricity Consumption   

Since the reform and opening up, the total consumption 
of electricity in China has undergone a sustained and 
significant increase, as shown in Figure 1, where the 
average growth rate was 9.06% from 1981 to 2010. In the 
process of growth, however, electricity consumption will 
inevitably be affected by a number of related factors. Thus, it 
is necessary to analyse the influential factors to extract the 
trend of electricity consumption in China and to determine 
the key factors. Through the literature review and practical 
experience of China’s power sector, we can see that the 
electricity consumption of China is mainly affected by the 
regional distribution of electricity, climate, and other relevant 
policies and economic factors. The following section will 
analyse and describe the factors of electricity consumption 
in China specifically. 
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Fig.1. Historical data for electricity consumption in China 
 
3.1 Regional Distribution of Electricity 
    The vast territory of China covers more than 60 degrees 
longitude and nearly 50 degrees latitude, and it crosses five 
time zones. Electricity consumption is obviously affected by 
different regional factors. The electricity resources of China 
present a reverse distribution. The developed economic 
regions in the middle and east of China have an electricity 
demand that far outweighs electricity supply; thus, the 
electric power supply gap is enormous. However, in the less 
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developed areas in western of China, electric power 
resources are more abundant, so the electricity supply 
outweighs electricity demand, and the phenomenon of 
electric energy waste is serious. We can see, then, that the 
regional distribution on the influence of China’s electricity 
consumption is objective; however, it is also an 
unchangeable situation because the influence of the 
regional distribution on power consumption has generally 
been a relatively stable situation. For annual electricity 
consumption forecasting, the regional distribution can be 
regarded as constant factors. 

3.2 Climatic Factors 
    China covers three climatic zones: the equatorial belt, the 
tropical belt and the temperate belt. The geographical 
location distribution of China means the climate has the 
characteristics of four distinct seasons. Figure 2 shows 
temperature fluctuations within 2°C in China in recent 
decades. The slope of the temperature over time is relatively 
gentle, and it presents cyclical fluctuation characteristics. 
Thus, there is no obvious correlation between the growth 
rate of China's annual electricity consumption and the 
volatility of China’s annual average temperature. 

 

Year  
Fig.2. Historical average temperature in China 

 

3.3 Policies and economic 
    As a developing country, China has implemented an 
export-oriented economic policy for a long time, so its 
energy dependence is strong. Usually, turmoil in the 
financial market will cause volatility in the energy market. 
Conversely, the instability of the energy market exacerbates 
the risk of the financial market. Electrical energy plays an 
important role in energy markets, and therefore, electrical 
energy is closely connected with economic development. 
China is currently in a critical stage because economic 
development is its first priority. Therefore, economic factors 
can be understood as the key to the development of electric 
energy. 
 

4 Methodology and Data 
4.1 Datasets 
    Indicators of economic performance can better reflect the 
trends and levels of electricity consumption. The question, 
then, is how to find suitable economic indicators. We know 
that the volatility of the GDP continuously influences the 
trend of electricity consumption; therefore, the GDP value 
can be seen as one of the indicators of the index system. At 
the same time, the “Troika” of the TEIV, IFA and DI can also 
accurately describe the trends of China’s economic growth. 
Thus, these three indicators can be included in the indicator 
system because they are representative and rational.  
    Furthermore, industrial production is an important 
component of economic production in the current industrial 
structure of China. Industrial electricity consumption 
accounts for a large proportion of total electricity 
consumption, generally 70% or more. On the one hand, 
industrial production creates great economic benefits; on the 
other hand, it consumes a large amount of electricity 
resources. Therefore, the IAV indicator, which reflects the 
growth trend of industrial production, can also be included in 
the indicator system. 
    In summary, we use the indicators GDP, TEIV, IFA, IAV 
and DI to construct the index system. 

These indicators not only reflect the true background of 
China's power consumption, but their inclusion also 
enhances the integrity of the index selection. A trend 
comparison chart of electricity consumption and the five 
factors is presented in Fig. 3.  
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Fig.3. Trend comparison chart of electricity consumption and the 
five factors 

By analysing the data of electricity consumption and the 
index system, we found that the electricity consumption and 
the five factors maintained the same linear growth trend. 
Through the uniform distribution test, we also found that the 
data of electricity consumption and influential factors over 
the past 30 years satisfy the uniform distribution and can be 
divided according to China’s five-year development plan, 
that is, the change trends of electricity consumption and 
economic growth present a stage of synchronisation. Test 
results are listed in the following Table 1. 

Table 1.  Results of uniform distribution test 

Six-Sample Kolmogorov-Smirnov Test 

 Five year plan 
1981~ 
1985 

1986~ 
1990 

1991~ 
1995 

1996~ 
2000 

2001~ 
2005 

2006~ 
2010 

          N     5 5 5 5 5 5 
Uniform Parameters Minimum -0.1 -0.03 -0.01 -0.1 -0.03 -0.25 

  Maximum -0.05 0.04 0.09 -0.04 0.19 0.3 

Most Extreme Absolute 0.2 0.2 0.385 0.394 0.238 0.217 

Differences Positive 0.2 0.2 0.2 0.2 0.2 0.217 

  Negative -0.2 -0.2 0.385 0.394 -0.238 0.2 
Kolmogorov-Smirnov Z   0.447 0.447 0.86 0.882 0.532 0.485 
Asymp. Sig. (2-tailed)   0.988 0.988 0.45 0.418 0.94 0.973 

4.2 Data Standardisation 
Many researchers have noted the importance of 

standardising variables for multivariate analysis. Otherwise, 
variables measured at different scales do not contribute 
equally to the analysis. For example, in boundary detection, 
a variable that ranges between 0 and 100 will outweigh a 

variable that ranges between 0 and 1. In effect, using these 
variables without standardisation gives the variable with the 
larger range a weight of 100 in the analysis. Transforming 
the data to comparable scales can prevent this problem. 
Typical data standardisation procedures equalise the range 
and/or data variability. 
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The methodology for data standardisation can be 
divided into three categories: extreme value methods, 
standardised methods and mean value methods. In this 
paper, we use a standardised method for two reasons: first, 
it eliminates the variation of the difference of each variable 
during dimensionless processing; second, it considers the 
distribution of the original data, which is what we need to 
establish the semi-parametric forecasting model. The 
calculation method is as follows: 

where   is the raw data to be standardised,   is the mean 
value and   is the standard deviation of the raw data. 

After standardisation, all variables have the same weight 
during analysis. In addition, we may decide to weight the 
data based on our knowledge of the relative importance of 
the variables. 

 

4.3 Building the Semi-parametric Prediction Model 
In the course of electricity consumption data processing, 

many researchers use the parametric model because its 
construction is simple and is easy to process. Furthermore, 
under a majority of situations (for instance, kinds of static 
problems of conventional historical consumption data), the 
use of this model remains in accordance with objective fact, 
and it can satisfy practical needs because a majority of 
system errors are compensated for and rectified and can be 
expressed in the parameter model before data processing. 
However, under some situations (for instance, some 
dynamic forecast issues of consumption), as the observed 
values include system errors that cannot be rectified and are 
not parametric, there are non-ignored differences between 
the parametric model and objective practicality.   

Conversely, scientific integrity is questioned when the 
system errors attempt to eliminate or compensate for 
themselves as a harmful composition. In fact, the system 
errors contain considerable information that influences the 
observed values. Therefore, if they can be identified and 
withdrawn correctly, not only can the accuracy of the 
parameter estimate be increased, but data can be provided 
for the study of the other subjects.  

In addition, the factor of impacting observed values can 
be divided into two parts: a linear relation and a certain 
interference factor in which the relationship to observation 
values is completely unknown, causing it to fall under an 
error item for no reason. In this case, too much information 
will be lost if the non-parametric model (though it has 
greater flexibility) is used; thus, the imitated result is 
unacceptable if the linear model is adopted. 

Given the above problems, other data forecast 
processing models need to be considered, such as the 
semi-parametric model: 

 (1)              ( ) ( 1, 2, , )T
i i i iY X g i n                       

where is observations, or historical electricity consumption, 
and is explanatory variables, or indicators. The error is 
assumed to be independent and identically distributed (iid.).   
is the   matrix of unknown parameters, and   is the   vector of 
unknown functions. In this paper, we use the distribution 
function of student residuals to replace the unknown 
function  . For simplicity, let  

1 1( , ) ( ,, ),T T T
ndY y y Y Y   ; 

1 1( , ) ( ), , , T
p nX x x X X   ; 

1 1( , ) (, , (( ) , ))T
n

T T
dG g g gg     ; 

1 1( , ) ( ,, ),T T T
nd        

The matrix form of the model (1) is  

 (2)                           Y X G                               
This is an important type of statistical model developed 

in the 1980s (Engle [18], 1986). Because it not only contains 
the parameter weight (which describes the known 
composition of the function relation in the observation 
values) but also contains the non-parameter weight (which 
exclusively shows the model deviation is unknown in the 
function relation), the model can generalise and describe 
numerous actual problems, bringing it closer to reality. As a 
result, the model is extensively developed, and its research 
is increasingly mature. 

In this sub-section, we first provide the prediction 
principle diagram based on the semi-parametric multiple 
regression model, and we analyse the forecasting process, 
which has multiple impact factors. Next, we give the specific 
steps on how to build the improved semi-parametric 
prediction model. 
4.3(a). Prediction principle diagram  
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Fig.4. Prediction principle diagram of semi-parametric model with 
multiple impact factors 

In Fig. 4, the tagging below the horizontal axis is the 
factor for each time period. Assuming that we have collected 
M kinds of factors associated with predictive object , we 
denote  . Supposing   at the historical time period   where 
the value to be predicted is  , we need to predict the future 
at the time period   under the law of historical development. 
If we consider the time axis as the horizontal axis and 
consider the vertical line with the current time point as the 
vertical axis, then Fig. 4 can be regarded as a two-
dimensional coordinate system with the time point 
“present” as the coordinate origin. Thus, Fig. 4 can be 
divided into four quadrants, fromⅠ to Ⅳ. Therefore, from 
Fig. 4, we can obtain that the implication of semi-parametric 
regression forecasting is as follows. We first use the data of 
quadrants Ⅱ and Ⅲ to proceed a historical fitting operation 
and derive the forecasting model. Next, we conduct the data 
of quadrant Ⅳ as the input of the forecasting model; thus, 
we can obtain the forecasting result of quadrantⅠ. 

4.3(b). Modelling steps 
Step 1: By establishing the multiple linear regression 

method and solving the parameter part  , we obtain  , which 
is the estimated value of  . 

Step 2: List the fitting residuals, we calculated the 
standardised residuals and student residual, made a 
distribution test on the student residual, drew the Q-Q plot, 
and observed whether it satisfied the normal distribution. 

The specific process is as follows ir : 

(1) Calculate the student residual    
ˆ

, 1,2, ,
(1 )
i

i

ii

r i n
MSE h


 

 
  

where î  is the residual vector and 2ˆ ~ (0, ( ))i N I H   , 
1( )T TH X X X X . The lever quantity iih is the i-th element 
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on the leading diagonal of H , and MSE  is the mean-
square error. 

(2) Normal Q-Q plot test for the student residual 

(a). obtain the student residual ir  in ascending order 

(1) (2) ( ), , , nr r r ; 

(b). calculate  

1
( )

0.375
[ ], 1,2, ,

0.25i

i
q i n

n
 

  


  

where 1( )x  is the inverse function of the standard 

normal distribution function, and constants 0.375 and 0.25 
are corrections.  

(c). Use points ( ) ( )( , ) ( 1,2, , )i iq r i n   in the Cartesian 

coordinate system to draw a scatter diagram. Observe the 

points ( ) ( )( , ) ( 1,2, , )i iq r i n  ; if they are roughly in a 

straight line, then the student residual satisfies the normal 
distribution, if not, it is not satisfied.  

Similarly, if the random variable ir  satisfies the following 

probability distribution law, we can also conclude that the 
student residual satisfies the normal distribution. (Table 2) 

Table 2.  The frequency inspection of student residual normality 

~ (0,1)ir N  (-1,1) (-1.5,1.5) (-2,2) 

P  0.68 0.87 0.95 
 

Step 3: If the student residual satisfies the normal 
distribution, select the appropriate residual fitting function, 
replace the unknown function G , and eliminate the local 
disturbance caused by the residual. Generally, if the student 
residual satisfies the normal distribution, we select the 
Gaussian function, that is, 

(3)                       

2

2

( )

2
1

( )
2

ir

ig e








                         

where ir is the student residual, and   and   are, 

respectively, defined as the sample mean and sample 

standard deviation operated by ir ; 

Step 4: Let ( )ig   into system (1); conduct transposition 

processing; obtain the improved semi-parametric model 

(4)      

2

2

( )

2 ( 1, 2, , )
1

2

i

T
i

r

i iY X i ne

  






                                            

Solving system (4), estimate the parameter ˆ
i ; 

Step 5: Build the semi-parametric forecasting model 

(5)              1 1 1 0,1,2, ,t t tY X G t n                                                    
 
4.4 Forecasting Results Correction Based on Interval 
Information Aggregation 

Using system (5), we can easily calculate the predictive 
value of electricity consumption at any time node. To further 
improve the prediction accuracy and to make the forecasting 
process more in line with the characteristics of the annual 
electricity consumption in China, this paper uses differential 
element theory to set the information aggregation intervals. 
We use an improved semi-parametric forecasting model to 
calculate the interval predictive function, and we define the 
rational weight to the interval predictive function through 
dynamic weight distribution and correct the forecasting 
results. Finally, a more accurate and meaningful electricity 
consumption prediction will be given. 

Next, we will provide the specific realisation steps of the 
above idea. 
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Fig.5. Information aggregation intervals set using differential 
element theory 

(1) Segmentation 

Subdividing S  into n  strips 1 2, , , nS S S  of equal time 

intervals (see figure 5), the width of the time interval [ , ]a b  is 

b a , so the width of each of the n  strips is  

b a
x

n


   

These strips divide the interval [ , ]a b  into n  subintervals 

0 1 1 2 2 3 1[ , ], [ , ], [ , ], ,[ , ]n nx x x x x x x x  

where 0x a  and nx b . The right endpoints of the 

subintervals are  

1

2

3

,

2 ,

3 ,

x a x

x a x

x a x

  
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  


 

 (2) Summation 
   The area of the region S  that lies under the graph of 

the function ( ) ( )j
iH x  is the area sum of the infinite 

differential curve trapezoid 

(6)                          
1 ( )

0
1 1

| ( ) |
p q

k
j

j k

S H x dx
 

                         

where ,p q  are constants and , 1, 2, ,p q n  . 
(3) Dynamic Weight Distribution 
From formula (6), we can obtain the areas of each of the 

n  strips , ( 1,2, , ).iS i n   Then, the weight can be 

defined as  

(7)                    

1 ( )

0
1

1 ( )

0
1 1

| ( ) |

| ( ) |

p
k

j
ji

i p q
k

j
j k

H x dx
S

S
H x dx

 

 

 
 

 
                 

where k is a constant, and 1, 2, ,k n  . 
 

5 Case Study 
The main goal of this study is to predict electricity 

consumption in China using the improved semi-parametric 
regression model. We first present an empirical illustration of 
China’s annual electricity consumption forecasting to 
examine the performance of our semi-parametric regression 
approach. Because the reform of 1978 significantly altered 
the economic development of China, we take 1981, the 
opening year of the “sixth five-year plan”, as the time 
division point. Therefore, we use the annual electricity 
consumption data after 1981 in our paper: the 1981-2005 
data (from the sixth five-year plan to the tenth five-year plan) 
for model building and the 2006-2010 (the eleventh five-year 
plan) data as testing data [21]. 

Improving the prediction accuracy is one of the main 
tasks in establishing a prediction model. However, in any 
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type of forecasting method, it is essential to determine the 
prediction error; therefore, how to control the prediction error 
and thus provide feedback to the forecasting technique is an 
important task. In this paper, we give three statistical 
measures to evaluate the prediction accuracy of our 
approach: the mean absolute error (MAE), mean absolute 
deviation (MAD) and the mean squared error (MSE). The 
MAE was used to measure the forecasting accuracy of the 
method; it usually expresses accuracy as a percentage and 
can also be written the as the mean absolute percentage 
error (MAPE). MAD and MSE are two measures of the 
average errors. The three measures are defined as follows: 

(8)                    
1

ˆ1 | ( ) ( ) |
(%)

( )

n

i

y i y i
MAPE

n y i


                      

(9)                      
1

1
ˆ| ( ) ( ) |

n

i

MAD y i y i
n 

                           

(10)                          
2

1

1
ˆ( )

n

i i
i

MSE y y
n 

                           

where ˆiy  and iy  represent the forecasted and 

observed values, respectively. 
When the semi-parametric regression forecasting 

approach is used to model and predict China’s annual 
electricity consumption, we first standardise the electricity 
consumption data and the impact factor data from 1981 to 
2010. Using the method described in section 4, we can 
easily obtain the standardised data. 

Next, we establish the multiple linear regression model. 
We first calculate the fitted values ˆiy , the residual î  and 

the student residual ir  as follows (Table 3). 

Table.3. Residual value table for 1981-2009 

Year iy
 

ˆiy î ir  
1981 -0.9467 -0.8621 -0.0846 -1.5323 
1982 -0.9283 -0.8566 -0.0717 -1.2968 
1983 -0.9043 -0.8495 -0.0548 -0.9901 
1984 -0.8784 -0.8341 -0.0443 -0.7999 
1985 -0.8443 -0.8106 -0.0337 -0.6058 
1986 -0.8131 -0.7984 -0.0147 -0.2639 
1987 -0.7656 -0.7776 0.0120 0.2146 
1988 -0.7200 -0.7508 0.0308 0.5510 
1989 -0.6795 -0.7286 0.0491 0.8747 
1990 -0.6431 -0.6875 0.0444 0.7945 
1991 -0.5858 -0.6495 0.0637 1.1400 
1992 -0.5098 -0.6063 0.0965 1.7152 
1993 -0.4351 -0.5637 0.1286 2.2790 
1994 -0.3504 -0.3915 0.0411 0.7251 
1995 -0.2662 -0.2966 0.0304 0.5450 
1996 -0.1976 -0.2401 0.0425 0.8075 
1997 -0.1507 -0.1771 0.0264 0.5095 
1998 -0.1198 -0.0982 -0.0216 -0.4034 
1999 -0.0451 -0.0185 -0.0266 -0.4956 
2000 0.0926 0.1255 -0.0329 -0.6100 
2001 0.2145 0.2486 -0.0341 -0.6554 
2002 0.3852 0.4261 -0.0409 -0.8103 
2003 0.6363 0.6449 -0.0086 -0.1611 
2004 0.9239 0.9810 -0.0571 -1.1653 
2005 1.2173 1.2283 -0.0110 -0.2329 
2006 1.6862 1.6205 0.0657 1.3746 
2007 1.9959 1.9798 0.0161 0.8203 
2008 2.1773 2.2063 -0.0290 -0.9220 
2009 2.4105 2.4071 0.0034 0.3676 
2010 2.5456 2.6079 0.0358 1.2896 

Next, we test the distribution of the student residuals by 
the normal Q-Q plot test. If the student residuals satisfy the 
normal distribution, we select an appropriate function to 
replace the unknown function G , and we eliminate the local 
disturbance of the forecast process. 

Using the method given in section 4.3 (b) for data 
normality inspection, we can draw a  Q-Q scatter diagram 
for Fig. 6. We can see from Fig. 6 that the scatter points are 
approximately in a straight line, which means the student 
residuals satisfy the normal distribution.  

  Similarly, we can also verify the above result with the 
frequency inspection in Table 2. By frequency analysis of  
 

the student residuals in Table 4, we can see that 73.3% 

( 22 30 0.733 0.68  ) of the ( 1, 2, ,30)ir i    falls within 

the interval (-1,1), 86.6% ( 26 30 0.867 0.87  ) falls within 

the interval (-1.5,1.5) and 96.6% ( 29 30 0.967 0.95  ) 

falls within the interval (-2,2). 

After we verified the distribution of the student 
residuals, we calculated the non-parametric part G  of the 
forecasting model. From system (3), we know that  

2

2

( )

2
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( )
2

ir

ig e

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




  
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T T
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have 
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

          

here, with a sample mean of 0.007583   and  

0.986877  . 
  Let   and   into system (11). Next, we can easily 

obtain the value  

(12)        
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Fig.6.  Q-Q scatter diagram 
 

Next, we set the information aggregation intervals. The 
setting standard of the width of information aggregation 
interval was in accordance with China’s five-year 
development plan. From the starting year of the data sample 
to the terminal year, we set a total of six intervals, 
corresponding to the sixth five-year plan (from 1981 to 
2010). This kind of division satisfies the characteristics of 
China’s stage of development, makes certain the objectivity 
of the factor selection in each interval, and it benefits the 
analysis of the causes of electricity consumption while 
improving the accuracy of the electricity consumption 
forecast. The expressions are as follows: 
(13)                             ( , , )t tY f P X t                            

Here, X  is a vector composed of related factors, P  is 
a parameter vector of the prediction model, Y  is the value 

to be predicted, t  is the time number, and 1 [1981,1985]t  , 

2 [1986,1990]t  , 3 [1991,1995]t  , 4 [1996, 2000]t  , 

5 [2001,2005]t  , 6 [2006,2010]t  .  

The prediction functions of each information 
aggregation interval are as follows: 

1 1 1( , , )

0.47632825 0.01217365 0.50841970 1.55220177

Y f P X t

GDP TEIV IAV


     

2 2 2( , , )

0.62129011 0.48820799 0.39332524 0.90085495

Y f P X t

GDP IFA IAV


      

3 3 3( , , )

0.04189416 0.17379825 0.78314703 0.12151406

Y f P X t

GDP IAV DI


      

4 4 4( , , )

2.23773325 3.35757076 6.96624885 6.83689285

Y f P X t

IFA IAV DI


   

 

5 5 5( , , )

0.26536488 0.14856407 0.89119562 0.38975257

Y f P X t

GDP TEIV IAV


     

6 6 6( , , )

0.06661806 0.86728505 0.25848989 0.34781584

Y f P X t

GDP IFA DI


   

 
 

Next, we determine the rational weight distribution of 
the prediction functions of each information aggregation 
interval. To standardise the operation process, we set the 
integral interval as [0,1] . Then, when 1t t ,  

4 1 (1)
1 0

1

| ( ) |j
j

S H x dx


    

where (1) ( )H x  is the growth function of electricity 

consumption iy , and, 

(1)
1 ( ) 0.0555 1.0868H x x   ; 

(1)
2 ( ) 0.0751( 0.25) 1.1006H x x    ; 

(1)
3 ( ) 0.0033( 0.5) 1.1194H x x   ; 

(1)
4 ( ) 0.0452( 0.75) 1.1186H x x   . 

Then, we can obtain  
4 1 (1)

1 0
1

| ( ) | 1.1089j
j

S H x dx


    

Similarly, when ( 2,3, 4,5,6)it t i  , we can obtain 

2 3 4 5 6, , , ,S S S S S . 
4 1 (2)

2 0
1

| ( ) | 1.0042j
j

S H x dx


   ; 

4 1 (3)
3 0

1

| ( ) | 0.6167j
j

S H x dx


   ; 

4 1 (4)
4 0

1

| ( ) | 0.3694j
j

S H x dx


   ;  

4 1 (5)
5 0

1

| ( ) | 0.4385j
j

S H x dx


   ;  

4 1 (6)
6 0

1

| ( ) | 2.0321j
j

S H x dx


    

Thus, from formula (7), we can calculate the value of 
weight ( 1,2, ,6)i i   . 

Therefore, we present the final semi-parametric 
prediction model with variable weight 
(14)

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6( , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )

0.17172886 0.43291718 0.17136345 0.19924826 0.66450236 0.31295116
tY f P X t f P X t f P X t f P X t f P X t f P X t

GDP TEIV IFA IAV DI

          
     



             
where  
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2

( )

2
1

2

ir

t tY eY








  

Thus, we can use system (14) to conduct an electricity 
consumption forecasting study. We also apply the GM (1, 1) 
and ANN models for comparison purposes. In the case of 
the GM (1,1) model, the resulting model is 

0.099067( 1) 18882.9496 15876.6496, 1, 2,3, .tx t e t    
Table 4 shows the forecasted values as well as the relative 
errors (REs) for the three methods. 

Measures of the corresponding forecasting errors are 
shown in Table 5. Both in the model building stage and in 
the testing stage for this particular case, the SPRM 
prediction approach outperforms the GM (1,1) and ANN 
models. Fig. 7 shows the model percentage error 
distributions for the SPRM prediction approach. In this 
figure, calibrations 1 to 25 correspond to the model building 
stage, and calibrations 26 to 30 correspond to the testing 
stage. 

 

 

Table 4. Observed and forecasted electricity consumptiona in China, 1981-2010, for three different approaches. 

Year 

Observed 
value 

iy
 

Observed 
value 

iy
 

GM(1,1) ANN  SPRMb 

FV RE(%)  FV RE(%)  FV RE(%) 

Model building Stage: 1980-2005 
1981 -0.9467 -1.0867 -1.0184 -7.57 -1.0333 -21.06 -1.1075 1.91 
1982 -0.9283 -1.1006 -0.9968 -7.38 -1.0059 -24.81 -1.0942 -0.58 

1983 -0.9043 -1.1194 -0.9731 -7.61 -0.9811 -25.24 -1.0783 -3.67 
1984 -0.8784 -1.1185 -0.9468 -7.79 -0.9427 -29.47 -1.0564 -5.55 
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1985 -0.8443 -1.1072 -0.9178 -8.71 -0.9063 -29.92 -1.0136 -8.45 
1986 -0.8131 -1.1056 -0.8858 -8.94 -0.8729 -30.31 -1.0241 -7.37 
1987 -0.7656 -1.0685 -0.8505 -11.08 -0.8435 -25.28 -1.0101 -5.46 
1988 -0.7200 -1.0067 -0.8115 -12.71 -0.7972 -25.51 -0.9663 -4.01 
1989 -0.6795 -0.9350 -0.7684 -13.08 -0.7365 -30.02 -0.8587 -8.16 
1990 -0.6431 -0.9076 -0.7208 -12.08 -0.6767 -34.61 -0.8313 -8.40 
1991 -0.5858 -0.8081 -0.6684 -14.12 -0.6091 -35.88 -0.7604 -5.90 
1992 -0.5098 -0.6525 -0.6104 -19.73 -0.5423 -33.35 -0.6856 5.07 
1993 -0.4351 -0.5117 -0.5464 -25.58 -0.4880 -29.58 -0.5521 7.89 
1994 -0.3504 -0.6219 -0.4760 -35.84 -0.4502 -28.48 -0.5524 -11.17 

1995 -0.2662 -0.5533 -0.3981 -49.54 -0.4253 -59.76 -0.5158 -6.77 
1996 -0.1976 -0.4606 -0.3121 -57.94 -0.3666 -85.52 -0.4452 -3.34 
1997 -0.1507 -0.4404 -0.2171 -44.06 -0.2587 -71.66 -0.4701 6.74 

1998 -0.1198 -0.4021 -0.1122 6.34 -0.1633 -36.31 -0.3728 -7.28 

1999 -0.0451 -0.3192 0.0036 107.98 -0.0300 33.48 -0.2802 -12.21 
2000 0.0926 -0.1699 0.1315 -42.01 0.1672 -80.56 -0.1627 -4.23 
2001 0.2145 -0.0429 0.2726 -27.08 0.3932 -83.31 -0.0446 3.96 
2002 0.3852 0.1463 0.4285 -11.24 0.6253 -62.33 0.1372 -6.22 
2003 0.6363 0.3382 0.6006 5.61 0.9947 -56.32 0.3282 -2.95 
2004 0.9239 0.7331 0.7907 14.41 1.2448 -34.73 0.7531 2.72 
2005 1.2173 0.9229 1.0005 17.80 1.3831 -13.62 0.9781 5.98 
Testing Stage: 2006-2010 
2006 1.6862 1.4963 1.2323 26.92 1.3314 24.54 1.4658 -2.03 
2007 1.9959 1.7342 1.4879 25.45 1.7004 29.81 1.7409 0.38 
2008 2.1773 1.9529 1.7701 18.70 1.8656 -6.07 2.0194 3.40 
2009 2.4105 2.1126 2.0817 13.64 2.1001 -8.42 2.1904 3.68 
2010 2.5456 2.2477 2.4257 4.71 2.5276 4.97 2.3469 4.41 

Remarks: aThe electricity consumption values are standardised data; 
bThe proposed semi-parametric regression model in this paper. 
FV: forecasted value. 

Table  5. Comparative analysis of forecasting erro                                                                                                                          

   Models MAPE(%) MAD MSE 

Model building Stage: 1980-2005 

GM(1,1) -13.07 0.0801 0.0083 
ANN -3.84 0.1082 0.0189 

SPRM -3.21 0.0401 0.0023 

Testing Stage: 2006-2010 

GM(1,1) 17.88 0.3636 0.1505 
ANN 12.75 0.2581 0.0814 

SPRM 2.79 0.0094 0.0043 
 

Percentage errors(%)
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Fig. 7. Percentage errors for the SPRM approach. 

Nomenclature 
The notations used throughout the paper are stated below: 

̂  Estimator of the parameter   
TA  Transpose of A  

x(t) Value of influence factors at time t 
y Electricity consumption function 

2( , )N  
 

Normal distribution function 

EC Electricity consumption 
GDP Gross domestic product 
TEIV Total import and export volume 
IFA Investment in fixed assets 
IAV Industrial added value 
DI Disposable income 

M-LTCF Mid-long-term consumption forecasts 
STCF Short-term consumption forecasting 
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6 Conclusion 
Mid-long term electricity consumption forecasting of a 

power system is a complicated task because the 
consumption is affected directly or indirectly by various 
factors primarily associated with the regional distribution, 
climate and economy. For a long time, many prediction 
methods have been proposed in an attempt to improve the 
forecast accuracy, but no one forecasting method is 
applicable to all situations. 

The major contribution of this paper is the proposal of a 
new statistical methodology to forecast electricity 
consumption. The proposed semi-parametric regression 
models, which are an integration of parametric and 
nonparametric regression models, capture the complex 
cooperative relationship between electricity consumption 
and its drivers. By analysing the distribution characteristics 
of the student residuals, we introduce a corresponding 
distribution function, and we use it as the non-parametric 
part of this semi-parametric regression model. In addition, 
we use differential element theory to calculate the value of 
the weight assigned to each piecewise prediction function, 
thereby eliminating the local disturbance of the forecast 
process and effectively reducing the prediction error or 
other system errors. The forecasting results demonstrate 
that the model performs remarkably well, and they 
demonstrate the effectiveness and reliability of our 
approach. 

Some areas for possible future improvement include the 
following: 

•Accuracy is an important index to measure the ability of 
forecasting methods, and irregular data will greatly affect 
the prediction accuracy; therefore, it is necessary to 
establish a more comprehensive data pre-processing 
mechanism. 

•Weight determination methods of low computational 
complexity and strong applicability will be sought. This 
paper uses differential element thought to solve the model 
weight, which can better reflect the predictions, but the 
solution process is complicated. We will explore a new 
weight determination method to improve the efficiency and 
applicability of the forecasting model. 
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