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Trust Region Method for Equilibrium Network Design Problem 
 
 

Abstract. This paper addresses a mathematical program with equilibrium constraints (MPEC) for network design problem with respect to link 
capacity expansions and signal settings, where stochastic user equilibrium constraints are expressed as variational inequality problem. The gradient 
of object function is received by sensitivity analysis of parametric variational inequality and a trust region method is presented for MPEC. Finally, 
numerical calculations are conducted and promising results have shown potential of the proposed method in solving network design problem. 
 
Streszczenie. W artykule opisano algorytm optymalizacji MPEC do tworzenia sieci, biorący pod uwagę możliwą ilość linków i ustawienia sygnału. W 
celu uwzględnienia równoważności użytkowników stochastycznych, wykorzystano zagadnienie nierówności wariacyjnej. Poprzez analizy 
nierówności otrzymano gradient funkcji obiektu oraz obszar ufności dla metody MPEC. Przedstawione wyniki obliczeń wykazują obiecujące efekty 
działania proponowanej optymalizacji. (Metoda obszaru ufności w projektowaniu sieci równoważnej). 
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Introduction 

Network design problem (NDP) is to determine the set 
of link capacity expansions where users’ route choice is 
taken into account. which is one of the most intensive 
problems in transportation literature. In past decades, a lot 
of rich work has been done from the associated references.  
Yang et al1-2 characterized the optimality conditions and 
derived the corresponding solution methods where the non-
smooth approaches have been considered. 
Lawphongpanich er al3-5   formulate NDP as mathematical 
program with equilibrium constraints (MPEC), bilevel 
optimization model respectively. Chiou6-8 presented a 
series of methods based on subgradient, such as quasi-
Newton subgradient projection method, generalized bundle 
subgradient projection method and conjugate subgradient 
projection method. Tobin and Patriksson9-13 work on traffic 
equilibrium by sensitivity analysis.  

In this paper, we firstly formulate asymmetric traffic 
network design problem with signal controlled and capacity 
constraints based on stochastic user equilibrium (SUE) 
instead of user equilibrium(UE) as MPEC. The first order 
sensitivity analysis is conducted and the gradient of 
variables of interest can be conveniently computed. a trust 
region method is presented for NDP. Numerical calculations 
are carried out on a road ollows.  
 
Problem formulation 

In this section, NDP is presented with a mathematical 
program with equilibrium constraints. Firstly, SUE is 
expressed in terms of variational inequality(VI) where user’s 
route choice is assumed to follow logit assignment principle. 
Then, first-order sensitivity analysis is conducted for which 
the gradient of variables of interests is conducted. Finally, 
an MPEC formulation is presented. 

The following Notation will be used. 

( , ) :G N A Directed road network, where N  is set of 

nodes and A is set of links. :W Set of OD pairs. :ay  Link 

capacity expansion on link a .
min
ay ,

max
ay : Bounds of link 

capacity expansion on link a . ( ) :a aG y  Investment cost on 

link a . :  Conversion factor from investment cost to travel 

time. :a  Vector of green light as proportions of common 

cycle time at the exit of link a . 
min max, :a a  Vector of bound 

of green light proportions. :f  Vector of link flow. :p  

Vector of path flow. :c  Vector of link flow travel cost. :C  

Vector of path flow travel cost. :as  Saturation flow on 

link a . :a  Saturation degree on link a . :q  Vector of travel 

demand. :  Link-path incidence matrix. :  OD-path 
incidence matrix. For traffic assignment problem of 
stochastic user equilibrium, a variational inequality model 
can be expressed as follows:  
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  is a positive dispersion parameter, which reflects an 
aggregate measure of drivers’ perception of travel costs.  

Theorem: Assume link flow travel cost function ( )C p  

is continuous, differentiable and monotone, the solution of 
(1) follows logit assignment principle. 

Proof: The KKT conditions of (1) are:  
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This means the solution of (1) follows logit assignment 
principle. In term of (1), traffic assignment problem with 
signal settings and link capacity expansions can be 
concluded as a parametric variational inequality: 
 

(5)  [ln ( , ) ( ( , ), , )][ ( , )w w w
k k kp y C p y y p y       

( , )] 0, ( , ) ( , ) ( , )w w w
k k kp y p y K y p y        

( , )w
k

k

p y   , ( , ) 0w
w kq p y   , where 

( ( , ), , ),w w
k ak a

a

C c f y y   ( , ) ( , ).w w
a ak k

w k

f y p y    



 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 3b/2013                                                                                      129 

The KKT conditions of (5) are:  
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Simplify (6),  
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Introduce   
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    Denoted ( , )p u as z and ( , )y  as  .  Therefore the 

first order sensitivity analysis of equations (8) for  can be 

derived by  
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     An optimization model for NDP can be formulated as  
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Where ( , )S y   is the solution set of (5). 

  In constrains (12)~(14), let B  and b  be the coefficient 
matrix and corresponding constant vector associated, thus 

(12)~(14) can be rewritten as the following form : D b  , 

min   max .  Following the results in sensitivity 

analysis, the first-order partial derivatives can be obtained 
by (10). Now the model (11)-(15) can be re-expressed as a 
single-level problem: 
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For (16), the objective function ( )Z   has no specific form. 

However, the gradient can be derived by sensitivity  
analysis.  
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Trust region method for NDP 

Due to the sensitivity analysis, a trust region method for 
simultaneously solving signal settings and capacity 

expansions in (16) can be established. Let kB be the 

approximation of Hesse matrix, a quadratic program can be 
concluded by using quadratic approximation of the objective 

function ( )Z  . 
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Conclude the above analysis, a new trust region scheme for 
MPEC is established in the following steps. 

Step1 Set initial parameters , , 1.k
k k    

Step2 Solve (5) and let 
kp be the solution. 

Step3 Compute f in (10)  ( )kZ   in (17). 

Step4 If ( ) 0kZ   , then stop; otherwise continue. 

Step5 Solve (18) and suppose 
kd is the solution. Find new 

iterate 
1k 
 .k kd  Let 1k k  , then go to Step2. 

 
Numerical calculations 
     In this section, numerical computations are conducted by 
trust region method in signal-controlled network where 
example network is shown in Fig.1. In this traffic network, 
the capacity of links 1,2,3,4 need adjustment and the green 
light proportions of intersections 4,5,6 need to be assigned. 
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Fig.1.Testing network 
 

The link travel time 
0
ac  and link capacity as  are shown in 

Table1. Computational results are concluded in Table2 and 
Table 3. 
 

Table 1 Initial value of 
0
ac  and as  

a 1 2 3 4 5 6 7 8 

ca
0 2 2 3 3 1 1 2 2 

sa 45 45 0 0 35 30 30 35 

a 9 10 11 12 13 14 15 16 

ca
0 2 1 2 1 2 1 2 2 

sa 36 40 35 35 30 35 40 40 

 

Table 2 Computational results for 
min
a =0.3, 

max
a =0.7, 

min
ay =0, 

max
ay =6.5. 

θ (λ1,4,λ1,5,λ1,6) 
Invest 
cost 

(y1,y2,y3,y4) 
Travel 
cost 

1 (0.49,0.44,0.43) 151.3 (3.9,5.7,1.9,2.6) 192.4 

2 (0.50,0.44,0.45) 134.7 (3.0,4.8,2.2,3.1) 201.5 

4 (0.51,0.49,0.40) 110.2 (1.9,2.3,0,0) 233.7 

8 (0.48,0.44,0.41) 110.2 (1.0,2.2,0,0) 244.9 

 

Table3 Computational results for 
min
a =0.2, 

max
a =0.8, 

min
ay =0, 

max
ay =10. 

θ (λ1,4,λ1,5,λ1,6) 
Invest 
cost 

(y1,y2,y3,y4) Travel cost 

1 (0.44,0.42,0.47) 213.4 (4.7,4.9,2.4,2.1) 220.6 

2 (0.48,0.46,0.43) 152.6 (3.5,4.7,1.0,1.0) 232.2 

4 (0.46,0.53,0.39) 139.5 (3.2,3.8,0,0) 276.8 

8 (0.44,0.48,0.44) 133.8 (2.5,2.8,0,0) 297.4 

 

As it observed is Tables 2 and 3, trust region method 
receives promising results and show faster convergence. 
 
Conclusions 
      This paper presents a new model for NDP based on 
SUE which is expressed as an MPEC program. A trust 
region scheme is proposed to effectively search for optimal 
solution. Numerical experiments are conducted on example 
network, where good performance shown in solving NDP. 
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