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Abstract. This work proposes a novel quad-issue VLIW architecture, called Caliburn, for directly executing legacy MIPS32 binary programs. To 
schedule and pack legacy MIPS32 binary codes on-the-fly, Caliburn has an integrated novel hardware instruction morphing mechanism that 
converts legacy MIPS32 binary instructions into a VLIW instruction bundles without the intervention of software compilers. The performance 
enhancement of Caliburn with a pipelined MIPS32 processor is evaluated. The Caliburn VLIW processor is implemented using Bluespec 
SystemVerilog HDL and synthesized using Synopsys Design Compiler. The experimental result reveals that the Caliburn processor achieves 3.08X 
speedup, and can be operated at a frequency of 425 MHz by the fabrication of TSMC 40nm technology library. 
 
Streszczenie. W artykule przedstawiono propozycję nowej struktury VLIW na potrzeby wykonywania programów w architekturze MIPS32. W 
rozwiązaniu zastosowano technikę morfingu, w celu eliminacji programowych kompilatorów. Wykonano badania eksperymentalne na procesorze 
MIPS32, potwierdzające efektywność i szybkość opracowanej architektury. (Caliburn – procesor VLIW MIPS32 ze sprzętowym mechanizmem 
morfingu). 
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Introduction 

Continuous advances in semiconductor technology have 
made the modern processor more complex and improved 
instruction-level parallelism (ILP). VLIW architectures, 
including Intel Itanium and Transmeta Crusoe, are attractive 
for increasing ILP in processors without the need for 
sophisticated reordering and scheduling mechanisms. 
However, the need to re-compile applications limits the 
range of adoption of these architectures. Owing to the issue 
of the compatibility of existed binary codes, software 
programs must be recompiled from source codes and 
cannot be used to execute directly existing applications. 
Also, the instruction packing ratio and ILP of conventional 
VLIW compilers are limited by run-time status of the 
program, and the capabilities of VLIW processors cannot be 
fully exploited accordingly. This work develops a novel 
VLIW architecture, Caliburn, for directly executing legacy 
MIPS32 binary programs. Caliburn comprises quad-issue 
VLIW pipeline execution units and with a forwarding unit, to 
decode/execute whole MIPS32 integer instruction sets. To 
schedule and pack the legacy MIPS32 machine codes in 
real time, a novel hardware instruction morphing 
mechanism is developed to schedule/pack conventional 
MIPS32 binary instructions into VLIW instruction bundles 
without the intervention of a compiler. To elucidate the 
advantages of Caliburn VLIW processor, the performance 
of a Caliburn VLIW processor is evaluated. The Caliburn 
VLIW processor was implemented using Bluespec 
SystemVerilog and synthesized using the Synopsys Design 
Compiler. The experimental results indicate that Caliburn 
processor achieves a 3.08X performance enhancement 
than conventional pipelined MIPS32 processor. The 
working frequency of 425 MHz can be achieved under the 
fabrication of TSMC 40nm technology.  
 
Related Works 

To increase the instruction level parallelism (ILP) of 
modern microprocessors, more functional units must be 
used to execute multiple issued instructions concurrently. 
Such microprocessors are called superscalar, and can be 
classified as dynamic superscalar or static superscalar. 
Most dynamic superscalar architectures use an out-of-order 
scheduling mechanism and reordering buffer to analyze 
dependence, schedule instructions, issue instructions, and 
execute instructions on-the-fly. Static superscalar 
architectures, including VLIW architectures, can execute 

multiple instructions concurrently, but cannot perform 
dynamic scheduling or the dynamic issuing of instructions [1] 
[3] [5]. Therefore, VLIW architectures require specific VLIW 
compilers to analyze and pack instructions that can be 
executed concurrently in an “instruction bundle” [6]. The 
software that is designed for VLIW processors must be re-
compiled. This requirement reduces their usefulness. 
Hence, many studies of binary translation and dynamic 
scheduling/execution of unpacking instruction streams have 
been published in recent years.  

The Itanium [6] architecture is a 64-bit microprocessor 
architecture that was designed by HP and Intel. It combines 
the features of RISC and VLIW, and can execute an EPIC 
instruction set. The VLIW compiler of the Itanium processor 
can group independent instructions, exploit instruction level 
parallelism, and finally pack independent instruction pairs 
into a single EPIC instruction bundle. Despite the cache, the 
hardware complexity of Itanium is lower than that of a 
modern superscalar processor, such as a Pentium 4, 
because the Itanium compiler reorders instructions, instead 
of hardware scheduler. However, the major challenge 
associated with the Itanium processor concerns binary 
compatibility. Existing software must be recompiled, which 
limits the range of uses of the Itanium processor. 

 

 
 
Fig.1. Execution flows of four VLIW architectures 
 

The Cyclone scheduler [3], developed by Ernst et al., is 
a dynamic instruction scheduler for the multiple issues 
superscalar processor. By using the proposed list-based, 
single-pass instruction scheduling algorithm, Cyclone can 
schedule and reorder instructions to improve the ILP of the 
superscalar processor. The kernel of the Cyclone scheduler 
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is the time estimation mechanism, which can estimate the 
execution time of the instructions. If the real execution time 
is less than the estimated time, then scheduler will execute 
those instructions. In contrast, if the real execution time is 
larger than the estimated time, then the Cyclone scheduler 
inserts instructions into the replay queue.  

This section considers in detail the design and 
implementation of the proposed Caliburn VLIW architecture. 
First, the architecture of the baseline MIPS32 processor is 
designed and the effectiveness of the integer MIPS32 
instruction decoder and the five-stage pipelined processor 
is verified. The basic building blocks, including the RISC 
pipeline, arithmetic logic unit, register file, memory interface, 
control unit, delayed branch, and forwarding unit, are 
developed in this stage. Second, the quad-issue VLIW 
processor is designed as an extension of the baseline 
MIPS32 architecture. Since the basic MIPS32 processor 
was designed in the preceding stage, the main objective of 
this second stage is to form a quad-issue datapath and a 
dedicated forwarding unit to handle the data dependence of 
instructions in the quad-issue datapath. The corresponding 
control unit, instruction decoder, and arithmetic and logic 
units are extended or duplicated to meet the requirements 
of the quad-issue processor. The complex register file is 
designed for sharing among the quad-issue pipelines. Third, 
the proposed sophisticated Hardware Instruction Morphing 
(HIM) mechanism is developed.  

Figure 2 shows the architecture of the proposed 
baseline MIPS32 processors, which comprises a five-stage 
pipeline. The stages are Instruction Fetch (IF), Instruction 
Decode and Register Fetch (ID), Execution (EX), Memory 
(Mem), and Write Back (WB). The first objective of 
designing this baseline MIPS32 processor is to verify the 
correctness of the integer MIPS32 instruction decoder. The 
implemented instructions include 79 MIPS32 integer 
instructions and two exception instructions. The second 
objective is to construct the fundamental pipelined datapath 
and the corresponding functional units, which are the 
arithmetic and logic unit (ALU), register file, memory access 
interface, program counter, and forwarding unit. After this 
baseline MIPS32 processor is designed the development 
steps described below can be accomplished. 

 

 
 

Fig.2. Organization of five-stage pipelined MIPS32 processor 
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Fig.3. Datapath of quad-issue VLIW processor with HIM echanism 

Based on the baseline MIPS32 processor that was 
described in the preceding subsection, the quad-issue 
MIPS32 VLIW processor can be constructed by using and 
extending the functional units of the baseline MIPS32 
processor.  Figure 3 presents the architecture of the quad-
issue MIPS32 VLIW processor. To extend to quad-issue, 
the datapath undergoes various modifications. These 
include the duplication of ALU, control signals, datapaths, 
and the MIPS32 instruction decoder. The register file and 
forwarding unit must be redesigned for the VLIW datapath. 
First, the register file must be modified from its two-read 
one-write capability to eight-read four-write capability, to 
share access among the four datapaths. Second, the 
forwarding unit must be rewritten for the transfer of 
operands among the four datapaths when the instruction 
contains data dependencies. 

The primary modification of the register file is the 
change in its accessing interface from two-read one-write 
capability to eight-read four-write capability. The number of 
registers remains 32. Since the four datapaths may read the 
same register at the same time, the modified read interface 
has to serve immediately.  

Figure 4 shows the architecture of the proposed 
Hardware Instruction Morphing (HIM) mechanism. Unlike 
the dynamic scheduler in conventional out-of-order 
superscalar processors, the proposed HIM mechanism 
analyzes instructions in simply way; detects the basic block; 
analyzes the dependence relations of the instructions; 
detects the types of hazards, and packs four instructions 
into an instruction bundle for the Caliburn VLIW processor. 
Since the HIM mechanism does not need to track the entire 
execution flow of each instruction, or to schedule 
instructions between the major functional units of the 
superscalar processor, the only purpose of the HIM 
mechanism is to select four instructions and pack them into 
an instruction bundle for the Caliburn VLIW processor. The 
hardware complexity is thus dramatically reduced. Table 1 
presents the types of instructions of MIPS32 ISA that 
utilized by the Caliburn VLIW processor. 

 

Instruction 
Cache

PC

Instruction
Analyzer

Dependence 
Detector

Instruction 
Bundler

Instruction 
Matcher

Basic Block 
Finder

Dependence 
Status Matrix

Instruction 
Stream Pool

Instruction 
Bundler 

Controller

VLIW
Instruction 

Decoder

Instruction
Stream

Analyzer

Instruction
Bundle
Merger

 
Fig.4. Hardware Instruction Morphing Architecture. 

 

Table 1. Classification of MIPS32 instructions 

 Type 
Instruction Field 

rs (r) rt (r/w) rd (w) sa (r) 

1 R type 1 V V (Read) V  
2 R type 2  V (Read) V V 
3 Special R type 1 V    
4 Special R type 2   V  
5 Special R type 3  V (Read) V  
6 Special R type 4 V  V  
7 I type 1 V V (Read)   
8 I type 2 V V (Write)   

 

All of the adopted MIPS32 instructions can be classified 
into eight types, based on their formats and features. (1) R 
type 1 and (2) R type 2 include most MIPS R-type 
instructions that use three operands and do not require an 
immediate value. The difference between R type 1 and R 
type 2 is the fields of rs (r) and sa (r) operands. Special R 
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type instructions can be classified into four sub-types based 
on their operands. I type 1 and I type 2 are MIPS I-type 
instructions. They have the same operand format but with 
different meanings. This classification of instructions 
substantially reduces the computation time that must be 
made by the Instruction Matcher to perform the analysis.  
 
Architecture of Caliburn VLIW Processor 

Figure 5 presents the datapath of the Caliburn VLIW 
processor. To increase the number of instructions that can 
be concurrently executed, Caliburn is composed of four 
functional units, and a VLIW register file that can support 
eight concurrently read and four concurrently write. Since 
the number of concurrently executed instructions in the 
VLIW datapath is increased, the dependence relations of 
executed instructions increase. In the single-issue, five-
stage pipelined processor, stalling instructions to prevent 
data dependence can solve this problem. However, in a 
four-issue VLIW processor, Caliburn, the stall penalty is 
serious if data-dependent instructions execute frequently. 
To solve this problem, the dedicated forwarding datapath 
for Caliburn VLIW processor is developed. The execution 
flow of the proposed Caliburn VLIW processor is as follows. 
Firstly, the MIPS32 binary instructions are fetched from the 
Instruction Cache, according to the starting address stored 
in PC. Then, the fetched instructions are fed into the 
Hardware Instruction Morphing stage of the Caliburn VLIW 
processor, to be analyzed, scheduled, and packed into a 
VLIW instruction bundle on-the-fly. The packed VLIW 
instruction bundle is then decoded using an Instruction 
Decoder. Each execution step of the Caliburn VLIW 
processor is much simpler than conventional dynamic 
superscalar processor, such as an Intel Pentium 4, because 
functional units of Caliburn processor operate in a fixed 
orientation. Conventional dynamic superscalar processors 
that adopt Tomasulo’s algorithm and a reordering buffer to 
schedule instruction stream, their execution flow may 
change every cycle because the completion time is variant 
and the commit order may change.  

 
Experiment Results 

The proposed Caliburn VLIW processor is implemented 
using Bluespec SystemVerilog [2], which is a new electronic 
system-level (ESL) hardware description language for 
unifying the hardware design flow from high-level modeling 
to Verilog chip design. The benchmark program for 
evaluating the speedup of Caliburn VLIW processor versus 
baseline MIPS32 processor is compiled by the MIPS SDE 
Lite [4] compiler. Figure 6 plots the experimental results 
concerning speedups with variant sizes of basic block. 
Since the Caliburn processor is a quad-issue VLIW 
architecture, the speedup is less than 1.0 if the basic block 
size is less than four. The Hardware Instruction Morphing 
(HIM) that is proposed in Section 4 uses the branch 
instruction as the boundary, so the VLIW instruction bundle 
will be filled with instructions if the basic block size is less 
than four. A basic block comprises two branch instructions, 
and the number of packed VLIW instruction bundles 
exceeds three. Therefore, the speedup of 2.51X is achieved 
when the basic block size exceeds 16. The initial cost of the 
basic block can be neglected. Finally, when the basic block 
size exceeds 32, a speedup of 3.08X can be achieved, 
indicating that the quad-issue VLIW processor can actually 
issue, execute, and commit instructions with 3.08 time 
performance improvement. The Verilog implementation of 
the Caliburn VLIW processor, generated from the Bluespec 
SystemVerilog design, is performed by using the Synopsys 
Design Compiler with TSMC 40nm technology library. The 
clock period is less than 2.35 ns, and the Caliburn VLIW 

processor can achieve a working frequency of 425 MHz. 
The chip area is 147887 μm2 and the corresponding power 
consumption is 23.5 mW. 

 
 
Fig. 5. Architecture of Caliburn VLIW processor. 
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Fig.6. Speedup versus Basic Block Size. 

 
Conclusions 

Conventional VLIW processors can achieve a high ILP 
without a complex instruction reordering mechanism, but its 
use is limited by the problem of binary codes compatibility. 
Software programs have to be recompiled and the 
hardware resource of VLIW architectures must be fully 
utilized to obtain better performance. This work proposes 
the Caliburn VLIW architecture for executing legacy 
MIPS32 binary programs without recompiling. A novel 
hardware instruction morphing mechanism is integrated into 
Caliburn to pack conventional MIPS32 binary instructions 
into VLIW instruction bundles without any intervention by a 
compiler. Relevant experimental results reveal that the 
Caliburn processor increases speedup by a factor of 3.08, 
and reaches a working frequency of 425 MHz using the 
TSMC 40nm technology library. 
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