
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 3b/2013                                                                                      113 

Ziqiang WANG1,2, Xia SUN1, Lijun SUN1, Xu QIAN2 

Henan University of Technology (1), China University of Mining & Technology(Beijing) (2) 
 
 

Tissue Classification Using Efficient Local Fisher Discriminant 
Analysis 

 
 

Abstract. A novel scatter-difference-based local Fisher discriminant analysis(SDLFDA) algorithm for tissue classification is proposed in this paper. 
SDLFDA explicitly considers the local manifold structure and interclass discrimination in gene expression data space. By using SDLFDA, each gene 
expression data can be projected into a lower-dimensional discriminative feature space. In addition, SDFLDA reduces the computational cost 
through QR decomposition. Experimental results demonstrate the effectiveness and efficiency of the proposed SDLFDA algorithm.  
 
Streszczenie. W artykule przedstawiono algorytm analizy lokalnym wyróżnikiem Fisher’a opartym na różnicach rozproszenia (ang. SDLFDA), 
służący do klasyfikacji tkanek. Proponowana metoda pozwala na zmniejszenie wymiarowości przestrzeni wyróżnika, określającego dane GXD, a 
także redukcję kosztów obliczeniowych dzięki dekompozycji QR. Wyniki badań eksperymentalnych potwierdzają skuteczność i sprawność 
algorytmu. (Efektywna analiza lokalnego wyróżnika Fisher’a do klasyfikacji tkanek). 
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Introduction 

Tissue classification based on gene expression has 
received extensive attention in recent years because of its 
potential applications in many fields[1,2]. Usually, tissue 
classification is very difficult due to the curse of 
dimensionality, a common way to attempt to resolve this 
problem is to use dimensionality reduction techniques. Two 
of the most popular techniques are principal component 
analysis(PCA) and linear discriminant analysis(LDA)[3]. 
However, both PCA and LDA algorithms see only global 
Euclidean structure and cannot discover the underlying 
manifold structure hidden in the high-dimensional data. 

Recently, a number of manifold learning algorithms have 
been proposed to discover the geometric property of high-
dimensional data that lie on or near a submanifold of the 
observation space[4,5], and they have been successfully 
applied to face recognition, document analysis, and 
microarray data analysis. Unfortunately, all of these 
algorithms suffer from the out of sample problem. One 
common response to cope with this problem is to apply a 
linearization procedure to construct explicit maps over new 
samples. The most representative such algorithm is locality 
preserving projection(LPP)[6].  

In this paper, we propose an efficient scatter-difference-
based LFDA(SDLFDA) algorithm to overcome the above 
two problems. The main contributions of this paper include: 
1) the scatter-difference-based local discriminant analysis is 
proposed to avoid the matrix singularity problem; and 2) By 
using QR-decomposition, SDLFDA casts local discriminant 
analysis into a much smaller matrix computation, which 
greatly facilitates efficient computation. 

  
Brief review of LFDA 

LFDA is a recently proposed manifold algorithm, it aims 
to search for the directions on which the between-class 
separability is maximized and at the same time the within-
class local structure is preserved [7]. It is based on locality 
preserving projection and explicitly considers the interclass 
discrimination. Suppose we have a set of gene expression 
data  1 2, , , N
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 . The objective function of LFDA is  
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where  bS  and  wS  denote the local between-class scatter 
matrix and local within-class scatter matrix, respectively, 

 b
ijW and  w

ijW  denote the weight matrices of the local  

between-class adjacency graph and local within-class 
adjacency graph, respectively, ic is the class label of the 

data point ix , and  1, 2, ,l c   is the class label. ijA  is the 

heat kernel weight. As can be seen from (1), by preserving 
the local geometric structure, LFDA aims to look for a 
transformation vector V such that the data pairs in the same 
class are made close and the data pairs in different classes 
are separated from each other. Finally, the optimal V ’s are 
the eigenvectors corresponding to the maximum eigenvalue 
of the generalized eigenvalue problem: 
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The solution can be readily computed by applying an 

eigen-decomposition on     1
w bS S


, provided that the local 

within-class scatter  wS  is nonsingular. 
 

Efficient scatter-difference-based LFDA algorithm 
In this section, we propose a scatter-difference-based 

local Fisher discriminant analysis(SDLFDA) technique to 
overcome the matrix singularity problem for tissue 
classification. A scatter-difference-based local discriminant 
analysis scheme is introduced to produce discriminating 
features: 
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where  0,1   is nonnegative parameter to control the 

trade off between local between-class scatter  bS  and local 

within-class scatter  wS . By imposing 1TV V  on (7), the 
maximization problem of (7) is equivalent to solving the 
following maximization problem: 
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In addition, as shown in [7],  bS  and  wS  can be easily 

rewritten as the following forms: 
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where      b b bL D W  ,      w w wL D W  ,  bD  and  wD  are both 
diagonal matrices, and their entries are column sums of 
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By using (9), the maximization problem of (8) can be 
rewritten as follows: 
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We can use the Lagrange multipliers to transform the 

above objective function to include the constraint 
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The optimization is performed by setting the partial 

derivation of  ,G V   with respect to V  to zero 
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Thus, the transformation vector V can be regarded as 

the eigenvectors of the matrix       1b w TX L L X    

associated with the largest eigenvalues. Since the matrix 
      1b w TX L L X   is symmetric, the obtained 

transformation vector V has the orthogonal columns. In 
addition, as can be seen from the above computation 
process, unlike original LFDA, our proposed SDLFDA 
successfully avoids the singular problem since no matrix 
inverse needs to be computed. For SDLFDA-based tissue 
classification, computing the transformation vector V in 
SDLFDA needs to solve the eigenvectors of the N N  

matrix       1b w TX L L X   , which is very expensive when 

the dimension N of gene expression data is very high. To 
reduce the computation in calculating the transformation 
vector V , we propose an efficient algorithm for performing 
SDLFDA through QR decomposition. Then we have 

 
(13)                                 X QR  
 
where matrix N tQ  has orthonormal columns, matrix 

t pR   is an upper triangular matrix, t  is the rank of the 
matrix X , and p is the reduced dimension of the matrix X . 

Since the optimal transformation vector V  has the 
orthogonal columns, it can be denoted as V QK  for a 

certain matrix t dK  satisfying T
dK K I . Then the optimal 

problem of computing V  in (10) can be transformed into 
calculating the optimal K  such that 
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where  Tr  denotes the matrix trace, dI  is the d-

dimensional identity matrix. 
In addition, since T

tQ Q I and X QR  , we can obtain 
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Then, by using (15), the maximization problem of (14) 

can be rewritten as follows: 
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Thus, the optimization problem in (16) can be solved by 

using the above similar method of Lagrange multipliers. 
That is, computing the optimal K  is translated into finding 

the eigenvectors of the matrix       1b w TR L L R    

associated with the largest eigenvalues. Finally, the optimal 
transformation vector V  can be obtained by 
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Note that the matrix       1b w TR L L R    is of size t t , 

which is much smaller than the size N N of the matrix 
      1b w TX L L X   since t N . In addition, solving the 

eigenvectors of the matrix       1b w TR L L R   has time 

complexity  3O t , which is greatly lower than the time 

complexity  3O N of directly solving the eigenvectors of the 

matrix       1b w TX L L X   . Thus the proposed QR 

decomposition algorithm for SDLFDA can facilitate efficient 
computation on high-dimensional data. 

According to the above statement, the algorithmic 
procedure of SDLFDA is summarized as follows: 

Step1: Constructing the nearest-neighbor graph. Let G  
denotes a graph with n  nodes. The ith node corresponds to 
the gene expression data ix .We put an edge between node 

i and j  if ix  is among the k-nearest neighbor of jx  or jx  is 

among the k-nearest neighbor of ix , and set the weight 

matrix A  of graph G  as 
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Step2: Computing the local between-class weight matrix 

 bW  and the local within-class weight matrix  wW  according 
to (4) and (5). 

Step3: Constructing the optimal objective function of 
SDLFDA in terms of (10), and transforming it into the 
eigenvector problem as in (12) via Lagrangian multiplier. 
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Step4: QR decomposition the data matrix X as in (17) 
with incomplete Cholesky decomposition. 

Step5: Computing the eigenvectors associated with the 
largest eigenvalues of the eigen-problem 

      1b w TR L L R K K     , and obtaining vector K . 

Step6: Computing the projection matrix V of SDLFDA 
according to (17). 

Step7: Obtaining the lower-dimensional representations 
Y of high-dimensional gene expression data X  based on 

 

(19)                    TT TX Y V X QK QR K R     

 
Step8:Tissue classification in the lower-dimensional 

feature space. Now, we get lower-dimensional 
representations of the original high-dimensional gene 
expression data via (19). In the reduced feature space, 
those gene expression data belonging to the same class 
are close to one another while those gene expression data 
belonging to different classes are far away each other.  

In summary, our proposed SDLFDA algorithm not only 
avoids the singularity problem by not computing matrix 
inverse, but also significantly reduces the computational 
cost on high-dimensional data via QR decomposition. 
 
Experimental results 

In this section, we investigate the performance of our 
proposed SDLFDA algorithm for tissue classification. The 
algorithm performance is compared with the PCA, LDA, 
LPP algorithms and the original LFDA algorithm, four of the 
most popular dimensionality reduction algorithms in tissue 
classification. We performed comparative study by repeated 
random splitting into training set and testing set. Each data 
set was partitioned randomly into a training set consisting of 
two-thirds of the whole data set and a testing set consisting 
of one-third of the whole data set.  

 
Table 1. Classification accuracy(%) comparisons 

Algorithm ALL GCM SRBCT LYMPHOMA 
PCA 87.5 66.2 83.6 85.4 
LDA 91.1 70.8 90.2 91.8 
LPP 91.3 70.9 89.4 91.6 

LFDA 95.8 75.6 97.5 97.8 
SDLFDA 97.6 76.3 99.9 99.7 

 
Table 2. Computational time(s) comparisons 

Algorithm ALL GCM SRBCT LYMPHOMA 
PCA 4.82 6.56 4.73 5.27 
LDA 9.58 15.28 10.57 11.48 
LPP 9.21 13.46 8.89 10.36 

LFDA 8.76 11.95 7.48 9.52 
SDLFDA 3.29 4.52 2.61 2.83 
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Fig.1. (1 )Classification accuracy of SDLFDA with respect to   on 
the ALL data set; (2) Classification accuracy of SDLFDA with 
respect to   on the GCM data set 
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Fig.2. (1) Classification accuracy of SDLFDA with respect to   on 
the SRBCT data set; (2) Classification accuracy of SDLFDA with 
respect to   on the LYMPHOMA data set 

 
Fig.1 to Fig.4 show the performance of SDLFDA as a 

function of the parameter   on the four data sets. It is easy 
to see that SDLFDA can achieve better performance than 
PCA, LDA, LPP and LFDA over a large range of  .Thus, 
the parameter selection is not a very crucial problem is our 
SDLFDA algorithm. 
 
Conclusions 

We have proposed a novel scatter-difference-based 
LFDA(SDLFDA) algorithm for tissue classification based on 
gene expression data. Experimental results demonstrate its 
effectiveness and efficiency. 
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