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Abstract. A complete overview of results is presented concerning induction heating of nonmagnetic cylindrical billets in magnetic field produced by 
permanent magnets. The authors proposed and modelled two possible ways of the process. The billet either rotates inside a system of appropriately 
arranged static permanent magnets or a ring containing such magnets rotates around an unmoving billet. Both arrangements were modelled 
numerically using fully adaptive higher-order finite element method and some results were verified by experiments on a physical model built in our 
lab.   
 

Streszczenie. W pracy opisano rezultaty modelowania procesu nagrzewania indukcyjnego kęsów aluminiowych w polu magnetycznym 
wytwarzanym przez magnesy stałe. Autorzy proponują i modelują dwa warianty technologii. Kęs może być obracany wewnątrz zestawu odpowiednio 
ustawionych magnesów lub pierścień magnesów jest obracany względem nieruchomego kęsa. Oba warianty były symulowane przy pomocy w pełni 
adaptacyjnej metody elementów skończonych wyższych rzędów. Niektóre wyniki symulacji porównano z modelem fizycznym zbudowanym przez 
autorów. (Indukcyjne nagrzewanie cylindrycznych kęsów w polu magnesów trwałych: symulacje i eksperymenty) 
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Introduction 
 Induction heating of cylindrical aluminum billets belongs 
to heat treatment technologies used for their softening 
before consequent hot forming. As the classical techniques 
are characterized by rather low efficiencies, novel, much 
more advantageous processes of this kind are introduced 
nowadays. One of them is based on heating a billet in 
magnetic field generated by appropriately arranged 
permanent magnets. Two possibilities were taken into 
account: the billet either rotates inside a static ring 
containing magnetic circuit with built-in permanent magnets 
or, vice versa, a well dynamically balanced ring containing 
permanent magnets rotates around the static billet (see 
Figs. 1a and 1b).  While the former arrangement is simpler 
from the viewpoint of its structure and possibility of driving, 
the latter one is advantageous from the viewpoint of the 
manipulation with the billet and lower thermal losses (the 
surface of the billet is not cooled so intensively because the 
billet does not move). 

 
 Fig. 1. Arrangement with rotating billet a) and rotating ring with 
permanent magnets b): 1–magnetic circuit (carbon steel), 2–
permanent magnets, 3–thermal insulation, 4–nonmagnetic billet 
 

The paper represents a natural continuation of work [1] 
and summarizes the most important latest results in the 
domain achieved by the authors. 
 

Continual mathematical model and its solution 
The mathematical model of the process consists of two 

partial differential equations for the distribution of magnetic 
and temperature fields in the system. Distribution of 
magnetic field described by the magnetic vector potential 
A  obeys the equation [1] 

 

(1)                c
1

curl curl curl


 
    

 
0A H v A ,  

 
where   is the magnetic permeability,   denotes the 

electrical conductivity, v  is the local velocity of rotation, and 

cH  stands for the coercive force (only in the domain of the 

permanent magnets). The artificial boundary is 
characterized by the Dirichlet condition  0A . 

The distribution of temperature in the system is described 
by the equation [2] 
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where   denotes the thermal conductivity,   is the 

specific mass, and pc  stands for the specific heat at a 

constant pressure. Finally, the symbol p  denotes the time 

average internal sources of heat represented by the 
volumetric Joule losses (no hysteresis losses are 
considered). These are given by the formula  
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Equation (2) is supplemented with the boundary condition 
respecting both convection and radiation. 

The physical parameters of heated aluminum (in our 
case electric and thermal conductivities and heat capacity) 
are temperature-dependent functions, which must be 
respected in the model.  
 
Numerical solution  

The procedure of the numerical solution starts with 
rewriting equations (1) and (2) into the weak forms 
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The solution itself is realized by a fully adaptive higher-

order finite element method, whose algorithms are 
implemented into codes Agros2D [3] and Hermes2D [4]. 
Both codes developed in our group for about ten years and 
written in C++ are generally intended for monolithic 
numerical solution of systems of generally nonlinear and 
nonstationary second-order partial differential equations 
and they are mainly used for hard-coupled modeling of 
complex physical problems. While Hermes2D is a library 
containing the most advanced procedures and algorithms 
for the numerical processing of the task solved, Agros2D 
represents a powerful preprocessor and postprocessor. 
Both codes are freely distributable and in 2D version they 
exhibit a lot of unique features, such as fully automatic hp-
adaptivity, work with hanging nodes of any level, multimesh 
technology (every field can be calculated on a different 
mesh generally varying in time) and a possibility of 
combining triangular, quadrilateral and curved elements. 

 
Illustrative example obtained results 

The mathematical model was tested on a device built in 
our laboratory. The device (corresponding to the version in 
Fig. 1 left) is depicted in Fig. 2. The principal dimensions of 
the heating part are indicated in Fig. 3. 

 
Fig. 2. Device for induction heating of rotating aluminum billets up 
to  60 mm  

 

 
 

Fig. 3. Principal dimensions (in mm) of the heating part 

The rated revolutions of the billet are 1500n  rpm, the 

corresponding angular velocity 157.1   rad/s. The 
magnetic circuit is made of carbon steel CSN 12 040 (its 
magnetization characteristic is in Fig. 4), permanent 
magnets are of type VMM10 (cross section of one magnet 
is 20 10 mm, r 1.28B  T, and r 1.11  ). The permanent 

magnets must be protected from excessive temperatures in 
order to avoid deteriorating their magnetic properties 

( max 80T  °C). This protection is realized by glass wool, 

which is a good thermal insulation. The axial length of the 
system is 120  mm. 
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Fig. 4. Magnetization characteristic of steel 12 040 
 

Figure 5 shows the discretization mesh (at the end of the 
process of adaptivity) used for computation of magnetic 
field in the system. The numbers in the rectangles denote 
the degrees of polynomials in particular elements.  

 
Fig. 5. Discretization mesh: the billet is discretized using curved 
elements (light lines - before adaptivity, dark lines - after adaptivity, 
numbers in the right column show the orders of the elements) 

 
The billet is discretized by combination of triangular and 

curvilinear elements. The regions in the neighborhood of 
the corners of the magnetic circuit representing the singular 
points are discretized by small triangles of low polynomial 
orders while places with expected smooth regions are 
covered by large triangles of high polynomial orders. 

Figure 6 shows the convergence curves when using the 
triangular and curvilinear elements for different initial setting 
of approximating polynomials in particular cells of the mesh. 
Comparable results are obtained (after the process of 
adaptivity) for 1396  elements (some of them being curved) 

and 1824  purely triangular elements. The savings in DOFs 
in this case are about 30 %. 
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Fig. 6. Convergence curves of results: symbol p denotes the initial 
degree of polynomials before the adaptive process (Agros2D) 

 
The distribution of force lines in the cross section of the 

system for the initial temperature and nominal revolutions is 
depicted in Fig. 6. 

 
Fig. 7: Distribution of magnetic field in the system 

 

The distribution of temperature in the system after 120 s 
of heating is depicted in Fig. 8. While the temperature of the 
billet reaches about 170  °C (and is almost uniform), due to 
the presence of good thermal insulation the permanent 
magnets (and also magnetic circuit) remain cold, so that 
there is no danger of deteriorating their physical properties 
because of overheating. The initial temperature of the 
heating process 0 30T  °C. 

 
Fig. 8. Distribution of the temperature in the system after 120 s of 
heating (n = 1500 rpm) 

Figure 9 contains the comparison between the calculated 
and measured temperatures of the billet surface versus 
time. There are two characteristics. The upper one 
corresponds to eight permanent magnets, while the lower 
one was obtained for only four magnets (instead of four 
remaining magnets the model contained four ferromagnetic 
poles of the same dimensions). The agreement is very 
good. 

The measurement of the surface temperature was 
performed using a high-quality thermocamera Fluke. The 
results of several measurements were averaged. 

 

Fig. 9. Time evolution of the average temperature of the billet for n 
= 1500 rpm  

 
Analogous computations were carried out for the version 

depicted in Fig. 1 left (with a rotating ring with permanent 
magnets). Due to lower coefficient of the convective heat 
transfer the results are more favourable, see Fig. 10. 
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Fig. 10. Time evolution of the average temperature of the billet for 
both versions depicted in Fig. 1 
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