
206                                                                                     PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 3a/2013 

Jelena NIKOLIĆ, Zoran PERIĆ, Danijela ALEKSIĆ 
Faculty of Electronic Engineering, Niš 

 
 

Otimization of µ-law companding Quantizer for Laplacian source 
using Muller’s method 

 
 

Abstract. The motivation of this paper is based on the fact that a straightforward solution to optimization of the widely used µ-law companding 
quantizer has not been proposed so far. We deal with this problem for the case of a Laplacian source and we apply Muller’s method for the 
optimization of the quantizer in question. Particularly, we use minimal distortion criteria and we apply Muller’s method in order to determine the key 
parameter of the µ-law companding quantizer. The optimization method we propose is very general and it is easily modified for non-Laplacian 
sources. It can be applied for speech compession, because speech signals are well modeled by Laplacian sources. 
 
Streszczenie. W artykule opisano sposób optymalizacji kwantyzatora kompansji u-law. Do tego celu zastosowano metodę Muller’a oraz kryterium 
minimalnych zakłóceń. Proponowana optymalizacja jest ogólna i może być zmodyfikowana dla źródeł nielaplasjanowych. (Wykorzystanie metody 
Muller’a do optymalizacji kwantyzatora kompansji u-law dla źródła laplasjanowego).  
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Introduction 

Although the two modified logarithmic compressor 
characteristics obtained by the piecewise linear 
approximation to the A-law and the µ-law characteristics 
have become widely used as a design guideline for 
nonuniform quantization of speech signals in digital 
telephony [1], the fundamental question of how to provide a 
simple manner to optimize parameters of these two 
quantizers has long been open for signals with Laplacian 
and Gaussian probability density function (PDF). More 
specifically, it has remained undefined how to provide the 
straightforward approach to solving the complex system of 
nonlinear equations, i.e., how to determine the parameters 
of the quantizers in question that minimize the mean-
squared error (MSE) distortion. 

In this paper, as in [2, 3, 4], we assume Laplacian PDF 
of the input signal and we focus on the robust µ-law 
companding quantization which gives an almost constant 
signal to quantization noise ratio (SQNR) in a wide range of 
variances. µ-law companding quantizer is preferable for use 
when the input signal’s variance changes with time in a 
wide range, as it is the case with speech signals [4]. As 
reported in [5], one of the reasons of often considering the 
Laplacian source is that the first approximation to the long-
time-averaged PDF of speech amplitudes is provided by the 
Laplacian PDF. 

The optimization problem observed in [3, 4] has been 
solved by numerical optimization of the compression factor 
µ and the support region of the µ-law companding quantizer 
under the constraint that compression factor µ has an 
integer value. In this paper, we go one step further in the 
optimization. Namely, in order to reduce the search time of 
an optimal solution to the system of two nonlinear 
equations, we do not set the constraint on the integer 
values of the compression factor µ, but instead we apply 
Muller's method that provide simple and fast determining 
the optimal compression factor from the range of real 
values. 

The rest of this paper is organized as follows. Section 2 
provides a detailed description of the proposed simple 
solution to the problem of optimizing the µ-law companding 
quantizer designed for the Laplacian source of unit 
variance. The achieved numerical results are the topics 
addressed in Section 3. Finally, Section 4 is devoted to the 
conclusions which summarize the contribution achieved in 
the paper. 

Optimization of µ-law companding quantizer for 
Laplacian PDF 

An N-level scalar quantizer Q is defined by mapping 
Q: R  Y [6, 7], where R is a set of real numbers, and 

  RyyyyY N  ,...,,, 321  is a set of representation levels that 

makes the code book of size │Y│ = N. Every N-level scalar 
quantizer partitions the set of real numbers into N cells 
Ri = (ti-1, ti], i = 1, …, N, where ti, i = 0, 1, …, N are decision 
thresholds and where it holds that Q(x) = yi, x  Ri.  

Companding technique, we consider in this paper, 
defines the following steps: compress the input signal x by 
applying the compressor function c(x); apply the uniform 
quantizer on the compressed signal Qu(c(x)); expand the 
quantized version of the compressed signal using an 
inverse compressor function c-1(Qu(c(x))). For a µ-law 
companding quantizer, denoted by Qμ, compression is done 
using the µ-law compressor function cμ(x): [−xmax, xmax] → 
[−xmax, xmax] [6, 7]: 
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where the parameter μ is the compression factor and xmax is 
the µ-law companding quantizer’s support region threshold. 
For the assumed Laplacian PDF p(x) [6]: 
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the expression for the total distortion of the µ-law 
companding quantizer is given by [8]: 
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Let us aasume that the µ-law companding quantizer is 
designed for the unit variance, σ2 = 1. Then, the expression 
for the total distortion becomes: 
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By setting the first derivate of the distortion given by (4) to 
zero with respect to µ, we obtain: 
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In order to provide the solution of this equation, i.e. to 
determine the optimal compression factor of the considered 
µ-law companding quantizer, we use the following closed-
form formula from [2], which defines the optimal support 
region threshold of the µ-law companding quantizer: 
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and we apply Muller’s method. 
Most of the root-finding methods approximate the 

function in the neighborhood of the root by a straight line 
[9, 10]. Muller's method is based on approximating the 
function in the neighborhood of the root by a quadratic 
polynomial. In fact, Muller's method generalizes the secant 
method of root finding by using quadratic 3-point 
interpolation [9, 10]. Particularly, Muller's method uses three 
points, constructs the parabola through these three points, 
and takes the intersection of the x-axis with the parabola to 
be the next approximation. The rate of convergence of 
Muller’s method is faster than the secant method but slower 
than Newton's method [9, 10]. However, in contrast to 
Newton's method, Muller’s method requires only function 
values and the derivative need not be calculated. In 
addition, it is well known that Muller’s method is more 
efficient than Newton's method when the range of values for 
root finding is wide, as it is the case we consider here [9, 
10]. The optimization method we consider in this paper is 
very general and it is easily modified for non-Laplacian 
sources. 

Muller's method is an iterative method that requires 
three starting points (x1, f(x1)), (x2, f(x2)), and (x3, f(x3)). The 
parabola passing through these three points can be written 
as [9, 10]: 
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where the coefficients are determined by: 
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and where it holds f1 = f(x1), f2 = f(x2), and f3 = f(x3). The 
intersection of the x-axis with the parabola gives:
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which is better approximation of the root than any of x1, x2, 
or x3. 
 
Numerical Results 

In this section, Muller’s method of root-finding is 
described. By using Muller’s method the optimal 
compression factor of the µ-law companding quantizer 
designed for the Laplacian PDF of unit variance has been 
determined. In addition, in this section, the performances 
that we have ascertained by applying the proposed 
quantizer in quantization of signals having Laplacian PDF 
and a wide variance range are discussed and compared 
with the one obtained in [2, 3]. 

By using Muller’s method we have determined the 
optimal compression factor of the µ-law companding 
quantizer with N = 256 quantization levels where, 
specifically, we have applied the following algorithm: 
 

1. Make an initial guess of µ by setting (x1, x2, x3) = 
(1, 255, 128), where (x1, x2) are border values. Then 
calculate the root value x4 according to (9); 

2. Update boundary points (x1, x2) by using criteria that 
boundary value further to the root x4 takes x3 value; 

3. Set the root value x4 as a new value for x3 and rearrange 
(x1, x2, x3) for the next iterative step. 

 
Starting with real numbers, iterates will remain real [9, 10]. 
By making global initializations of the algorithm with 
boundary points (x1, x2) = (1, 255), we have assured that the 
algorithm converges to the solution, which is thus certainly 
to be the real value. As already mentioned, Muller's method 
uses three initial evaluations of a function f1, f2 and f3, but 
does not require the derivative of the function, which is a 
convenience of Muller's method and one of the reasons we 
have decided to utilize this method. 

The relative error of estimating the root value: 

(11)                            100%
4

34 



x

xx ,               

is usually appointed criteria for stopping the iterative 
algorithm [9, 10]. Accepting the accuracy in the first decimal 
place, Muller's method, in our case, stops at the nineth step 
with the optimized value for the compression factor of 
µ = 16.9227, and according to Table 1 with the relative error 
of estimating the root value of δ = 0.1 %. Further, the 
optimal support region threshold determined from (6) for the 
corresponding compression factor µ = 16.9227 is 
xmax = 9.12. Similar results has been obtained in [3] in the 
case of µ-law companding quantizer designed for the same 
Laplacian PDF of unit variance and for the same number of 
quantization levels (N = 256), where the numerical 
optimization procedure of the compression factor and the 
support region threshold have been performed 
simultaneously, with the restriction that μ has an integer 
value. As a result of such optimization the optimum value 
for compression factor of μ = 17 has been determined along 
with the optimal value of the support region threshold of 
xmax = 9.9. 
 

Table 1. Parametres for analysis of the accuracy of the Muller’s 
method 

Step x1 x2 x3 x4 δ [%] 

1 1 255 128 89.5645 42.9137 

2 1 128 89.5645 57.1664 56.6733 

3 1 89.5645 57.1664 39.2620 45.6023 

4 1 57.1664 39.2620 27.9580 40.4320 

5 1 39.2620 27.9580 21.5898 29.4963 

6 1 27.9580 21.5898 18.3749 17.4961 

7 1 21.5898 18.3749 17.1830 6.9365 

8 1 18.3749 17.1830 16.9400 1.4344 

9 1 17.1830 16.9400 16.9227 0.1022 

 
Quality of a quantized signal is along with distortion 

commonly specified by signal to quantization noise ratio [6]:  
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Since one of the main goals when designing quantizers is to 
provide as high as possible quality of the quantized signal, 
i.e. to achieve as high as possible SQNR, Fig. 1 verifies that 
the considered Muller's method is capable of significantly 
increasing the maximum of SQNR of a µ-law companding 
quantizer. We can observe that, for the unit variance, the   
µ-law companding quantizer, designed in accordance with 
Muller's method, gives the highest SQNR, precisely 2.72 dB 
higher than the µ-law companding quantizer designed in [2] 
for the case when the values of compression factor and the 
support region threshold amount to μ = 255 and 
xmax = 10.1147. As shown in Fig. 1, it is obvious that when 
the µ-law companding quantizer is designed for Laplacian 
PDF of unit variance, with the support region threshold 
xmax = 9.12 and with the compression factor µ = 16.9227, 
the SQNR characteristic does not exceed characteristic of 
the G.712 Recommendation [11] in the whole variance 
range. Namely, employing forward adaptive technique as in 
[4], the quality of the quantized signal could be substantially 
balanced. However, the emphasis in this paper is on the 
fixed μ-law companding quantizer's optimization, which can 
certainly be easily adapted using well-known adaptation 
techniques. 
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Fig. 1. SQNR characteristics in the wide variance range for N = 256, 
μ = 255, xmax = 10.1147 and μ = 16.9227, xmax = 9.12 
 
Conclusion 

In this paper, we have proposed an algorithm for the 
optimization of µ-law companding quantizer designed for 
the Laplacian source of unit variance. Particularly, we have 
proposed an algorithm that provides the optimization of 
compression factor µ and accordingly, the optimization of 
the corresponding support region threshold. We have 
utilized Muller’s method of root-finding and we have 

determined the optimal compression factor µ from the range 
of real values. Globaly initializing the algorithm with 
boundary points of 1 and 255, we have assured that the 
algorithm converges to the solution, which is thus certainly 
to be the real value. We have calculated optimal value for 
compression factor µ in the nineth iteration step with relative 
error of 0.1 %. We have shown that iteratively calculated 
results compare nicely with the ones obtained in [3]. In such 
a manner we have confirmed the correctness of the 
proposed algorithm and of the resulting optimized value for 
the compression factor µ. Eventually, we have pointed out 
that Muller's method is fast and no so demanding root-
finding method, which generally can be easily modified for 
non-Laplacian sources. 
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